著者
NAOI Moeka KAMAE Youichi UEDA Hiroaki MEI Wei
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2020-027, (Released:2020-02-10)
被引用文献数
14

Atmospheric rivers (ARs), narrow water vapor transport bands over the mid-latitudes, often cause great socio-economic impacts over East Asia. While it has been shown that summertime AR activity over East Asia is strongly induced by preceding-winter El Niño development, it remains unclear the extent to which seasonal transitions of El Niño Southern Oscillation (ENSO) from winter to summer affect the AR activity. Here we examine the relationship between the seasonal transitions of ENSO and the summertime AR activity over East Asia using an atmospheric reanalysis and high-resolution atmospheric general circulation model (AGCM) ensemble simulations. A rapid transition from preceding-winter El Niño to summertime La Niña results in more AR occurrence over northern East Asia via northward expansion of an anomalous low-level anticyclone over the western North Pacific compared to sustained or decayed El Niño cases. The northward expansion of the anticyclone is consistent with a steady response of the atmosphere to the anomalous condensation heating over the Maritime Continent and equatorial Pacific. Meridional positions of the extratropical AR occurrence and circulation anomalies are different between the reanalysis and AGCM simulations, which is possibly contributed by a limited sample size and/or AGCM biases and suggests that seasonal prediction of AR-related natural disaster risk over East Asia on a regional scale remains a challenge.
著者
UEDA Hiroaki MIWA Kana KAMAE Youichi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-044, (Released:2018-05-14)
被引用文献数
13

The response of tropical cyclone (TC) activity to the El Niño-Southern Oscillation (ENSO) and coherent sea surface temperate (SST) anomaly in the Indian Ocean (IO) is investigated with a particular focus on the decaying phase of El Niño. The TC anomalies are obtained from the database for Policy Decision making for Future climate change (d4PDF). This dataset is based on 100-member ensemble simulations for the period of 1951-2010 by use of the state-of-the-art atmospheric general circulation model (AGCM) forced with observed SST as well as the historical radiative forcing. AGCM utilized in the d4PDF is the Meteorological Research Institute Atmospheric General Circulation Model with about 60km horizontal resolution. Our analysis reveals a prolonged decrease in TC frequency over the tropical western Pacific during the post El Niño years until the boreal fall. Dominance of anomalous anticyclone (AAC) over the western Pacific induced by the delayed warming in the tropical Indian Ocean is the main factor for the suppressed TC activity rather than the local SST change. In contrast, the TC number over the South China Sea tends to increase during the post-El Niño fall (September to November). The physical reason can be ascribed to the weakening of AAC associated with the termination of IO warming. Thus we demonstrate that the effect of the IO warming should be taken into account when the ENSO is considered as an environmental factor for predicting TC activity.
著者
KAMAE Youichi MEI Wei XIE Shang-Ping
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2017-027, (Released:2017-09-07)
被引用文献数
53

Eddy transport of atmospheric water vapor from the tropics is important for rainfall and related natural disasters in the middle latitudes. Atmospheric rivers (ARs), intense moisture plumes typically associated with extratropical cyclones, often produce heavy precipitation upon encountering topography on the west coasts of mid-latitude North America and Europe. ARs also occur over the northwestern Pacific and sometimes cause floods and landslides over East Asia, but the climatological relationship between ARs and heavy rainfall in this region remains unclear. Here, we evaluate the contribution of ARs to the hydrological cycle over East Asia using high-resolution daily rainfall observations and an atmospheric reanalysis during 1958–2007. Despite their low occurrence, ARs account for 14–44% of total rainfall and 20–90% of extreme heavy-rainfall events during spring, summer and autumn seasons. AR-related extreme rainfall is especially pronounced over western-to-southeastern slopes of terrains over the Korean Peninsula and Japan, owing to strong orographic effects and a stable direction of low-level moisture flows. A strong relationship between warm-season AR heavy rainfall and preceding-winter El Niño is identified since the 1970s, suggesting the potential of predicting heavy-rainfall risk over Korea and Japan at seasonal leads.