著者
Asuka Tsuchiya
出版者
Society for Clinical Epidemiology
雑誌
Annals of Clinical Epidemiology (ISSN:24344338)
巻号頁・発行日
vol.3, no.2, pp.37-45, 2021 (Released:2021-04-01)
参考文献数
19
被引用文献数
1

In clinical epidemiological studies, many exposures and confounders are time dependent. In the presence of time-dependent confounders affected by previous exposures, the usual analytic methods may introduce biases. Marginal structural models are used to deal with time-dependent confounders and exposures. A marginal structural model is a regression model for a pseudo-population using the concept of a potential outcome. The inverse probability of treatment and censoring weighting method is used to create a pseudo-population in which the effects of baseline confounders and time-dependent confounders can be removed when estimating the causal effect of the exposure on the outcome event. If the accuracy of the weights is high, the inverse probability of treatment and censoring weighting method is reliable and the bias of the marginal structural model is small. After the weights are created, a weighted regression model is applied to calculate the treatment effect. This seminar series paper introduces time-dependent confounders, time-dependent treatments, and marginal structural models.

言及状況

外部データベース (DOI)

Twitter (10 users, 11 posts, 108 favorites)

Time-dependent confounders・treatmentの考え方とリハって相性いい?ただ、治療選択に関わる共通のConfoundersがないのが課題か。細かいこと言えばキリないけど、臨床の感覚だと単純にFIM or BIとか、歩行速度でもいいような、でも疾患・症状の増悪とかも関わるから難しいか https://t.co/hQoFdyON9u
今更ながら時間依存性交絡について学んでおります。 自分の研究テーマで必要が出てこないとなかなか学ぶ気になれない。。。 さて、最初のとっかかりとしてバランスの良い解説論文を見つけました。とても丁寧な解説なので入門に適していると思います☺ https://t.co/3SRbZeShVp
・反事実モデルに基づく直接効果と間接効果の推定, 計量生物学 Vol. 40, No. 2, 81 − 116 (2020) https://t.co/nHKdKdQYk1 ・Introduction to Time-dependent Confounders and Marginal Structural Models https://t.co/M59yAotFZt

収集済み URL リスト