- 著者
-
松田 孟留
- 出版者
- 一般社団法人 日本応用数理学会
- 雑誌
- 応用数理 (ISSN:24321982)
- 巻号頁・発行日
- vol.31, no.4, pp.7-14, 2021-12-22 (Released:2022-03-31)
- 参考文献数
- 32
In this paper, we review the theory of shrinkage estimation and superharmonicity. First, we introduce Steinʼs paradox on estimation of the normal mean vector and explain its relationship with superharmonicity. Next, we investigate the extension to matrices, in which the shrinkage of singular values plays a key role for exploiting low-rankness. Finally, we illustrate recent developments on shrinkage predictive densities, empirical Bayes marix completion and matrix superharmonicity.