著者
田村 綾子 Gerardo VALADEZ HUERTA 難波 優輔 久間 馨 古山 通久
出版者
Society of Computer Chemistry, Japan
雑誌
Journal of Computer Chemistry, Japan (ISSN:13471767)
巻号頁・発行日
vol.21, no.4, pp.129-133, 2022 (Released:2023-06-22)
参考文献数
9

Multi-element alloy nanoparticles have attracted attention for their potentially high catalytic properties. However, a high degree of freedom in configurations of metal atoms within nanoparticle increases the distinct adsorption sites, making it difficult to theoretically analyze its catalytic properties because the first-principles calculation requires a considerable computational cost. In this study, we develop a sequential scheme to calculate hundreds of adsorption sites by employing a pre-trained universal neural network potential named PFP. Our automated scheme is applied to CO single-molecule adsorption of CO onto PtRuIr ternary alloy nanoparticles. The calculation results are first compared with DFT results to confirm the accuracy. Adsorption energies in the alloy systems are widely distributed in comparison with those of the monometal counterparts, indicating that the alloy nanoparticle includes adsorption sites with various catalytic activities.

言及状況

外部データベース (DOI)

Twitter (4 users, 4 posts, 3 favorites)

【論文公開】 Matlantisを活用した論文が公開されました。 三元系合金クラスターへのCO吸着を解析し、PFPが多様で複雑な構造でもDFTと同精度で吸着エネルギーを示した事例となります。 詳細は以下文献URLをご参照ください。 https://t.co/qQjp1YhFDB
Accelerate catalytic research with #Matlantis' Universal Neural Network Potential! A versatile PFP model can analyze hundreds of adsorption sites on multi-element alloy nanoparticles. Find out more in the letter on CO Adsorption on Ternary Nanoalloys. https://t.co/VGUCmn3cYO

収集済み URL リスト