著者
中村 理恵 野間 久史
出版者
日本計量生物学会
雑誌
計量生物学 (ISSN:09184430)
巻号頁・発行日
vol.41, no.2, pp.117-136, 2021 (Released:2021-05-11)
参考文献数
31

In multicenter clinical trials, the assessment for heterogeneity of various relevant factors across participating centers is a relevant issue because it can cause inconsistency of the treatment effects. Especially, outlying centers with extreme profiles can influence the overall conclusions of these trials. In this article, we propose quantitative methods to detect the outlying centers and to assess their influences in multicenter clinical trials. We proposed four effective methods based on (1) a studentized residual obtained by a leave-one-out analysis, (2) a model-based significance test to detect an outlying trial using a mean-shifted model, (3) a relative change measure for the variance estimate of the overall treatment effect estimator, and (4) a relative change measure for the heterogeneity variance estimate in a random-effects model. In addition, we provide parametric bootstrap algorithms to assess the statistical variability of their influential measures. We also demonstrate the practical effectiveness of these proposed methods via applications to two clinical trials for benign prostatic hyperplasia and cardiovascular heart disease.

言及状況

外部データベース (DOI)

Twitter (4 users, 4 posts, 11 favorites)

これはデータ解析一般に有用なテーマな気がするので読みたい 多施設共同臨床試験における極端なプロファイルを持つ施設の検出と影響力診断の方法 #iron勉強メモ https://t.co/1q0UDrwAOx
今号の計量生物学のこの論文は統計学的中央モニタリングに通じる話かな、面白そう https://t.co/XUJ4RO9xf0

収集済み URL リスト