著者
鈴木 越治 小松 裕和 頼藤 貴志 山本 英二 土居 弘幸 津田 敏秀
出版者
一般社団法人日本衛生学会
雑誌
日本衛生学雑誌 (ISSN:00215082)
巻号頁・発行日
vol.64, no.4, pp.786-795, 2009 (Released:2009-10-02)
参考文献数
53
被引用文献数
2 1

A central problem in natural science is identifying general laws of cause and effect. Medical science is devoted to revealing causal relationships in humans. The framework for causal inference applied in epidemiology can contribute substantially to clearly specifying and testing causal hypotheses in many other areas of biomedical research. In this article, we review the importance of defining explicit research hypotheses to make valid causal inferences in medical studies. In the counterfactual model, a causal effect is defined as the contrast between an observed outcome and an outcome that would have been observed in a situation that did not actually happen. The fundamental problem of causal inference should be clear; individual causal effects are not directly observable, and we need to find general causal relationships, using population data. Under an “ideal” randomized trial, the assumption of exchangeability between the exposed and the unexposed groups is met; consequently, population-level causal effects can be estimated. In observational studies, however, there is a greater risk that the assumption of conditional exchangeability may be violated. In summary, in this article, we highlight the following points: (1) individual causal effects cannot be inferred because counterfactual outcomes cannot, by definition, be observed; (2) the distinction between concepts of association and concepts of causation and the basis for the definition of confounding; (3) the importance of elaborating specific research hypotheses in order to evaluate the assumption of conditional exchangeability between the exposed and unexposed groups; (4) the advantages of defining research hypotheses at the population level, including specification of a hypothetical intervention, consistent with the counterfactual model. In addition, we show how understanding the counterfactual model can lay the foundation for correct interpretation of epidemiologic evidence.

言及状況

外部データベース (DOI)

はてなブックマーク (4 users, 5 posts)

概ね良い解説文だと思うが、時折ちょっともにょるなぁ
[疫学][統計学][統計][科学] 因果推論。反事実モデルの説明。参考になります。

Twitter (13 users, 13 posts, 30 favorites)

J-STAGE Articles - 医学における因果推論 第一部 https://t.co/sD7SMwgLTR
https://t.co/X1P1IYshAV
医学における因果推論 第一部 ―研究と実践での議論を明瞭にするための反事実モデル― https://t.co/5TrocjyyYO
医学における因果推論 第一部 https://t.co/F64Fwi2jYw
Rubin系とPearl系の日本語解説メモ@日本衞生學雜誌:医学における因果推論 第一部(反事実モデル) https://t.co/dvySGj5e 医学における因果推論 第二部(Directed acyclic graph) https://t.co/mvZtwXiw
鈴木 越治 , 小松 裕和 , 頼藤 貴志 , 山本 英二 , 土居 弘幸 , 津田 敏秀(2009)「医学における因果推論 第一部 研究と実践での議論を明瞭にするための反事実モデル」『日本衛生学雑誌』 64(4), 786-795  http://t.co/2PZbszLB

収集済み URL リスト