著者
ISHIJIMA Kentaro TSUBOI Kazuhiro MATSUEDA Hidekazu TANAKA Taichu Yasumichi MAKI Takashi NAKAMURA Takashi NIWA Yosuke HIRAO Shigekazu
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2022-017, (Released:2021-12-10)

Temporal variations of atmospheric radon-222 (222Rn) observed at four Japan Meteorological Agency stations in Japan by the Meteorological Research Institute were analyzed using an on-line Global Spectral Atmosphere Model–Transport Model (GSAM-TM). Monthly and diurnal variations, and a series of synoptic high-222Rn events were extracted from 5-12 years of 222Rn observations during 2007-2019. Observed seasonal patterns of winter maxima and summer minima, driven mainly by monsoons, were well reproduced by the GSAM-TM based on existing 222Rn emission inventories, but their absolute values were generally underestimated, indicating that our understanding of 222Rn emission processes in East Asia is lacking. The high-resolution model (∼ 60 km mesh) demonstrated that observed consecutive high-222Rn peaks at several-hour timescales were caused by two 222Rn streams from different regions and were not well resolved by the low-resolution model (∼ 200 km mesh). GSAM-TM simulations indicate that such cold-front-driven events are sometimes accompanied by complicated three-dimensional atmospheric structures such as stratospheric intrusion over the front, significantly affecting distributions of atmospheric components. A new calculation approach using hourly 222Rn values normalized to daily means was used to analyze the diurnal 222Rn cycle, allowing diurnal cycles in winter to be extracted from 222Rn data that are highly variable due to sporadic continental 222Rn outflows, which tend to obscure the diurnal variations. Normalized diurnal cycles of 222Rn in winter are consistent between observations and model simulations, and seem to be driven mainly by diurnal variations of planetary-boundary-layer height (PBLH). These results indicate that 222Rn in the near-surface atmosphere, transported from remote source regions, could vary diurnally by up to 10 % of the daily mean owing mainly to local PBLH variations, even without significant local 222Rn emissions.

言及状況

外部データベース (DOI)

Twitter (3 users, 5 posts, 3 favorites)

New Online Release of JMSJ Vol. 100, No.2 (April 2022) Ishijima et al., 2022: Understanding temporal variations of atmospheric radon-222 around Japan using model simulations. J. Meteor. Soc. Japan, 100,343-359. https://t.co/1InmQuKFBJ https://t.co/x53WrsTNPB
New Graphical Abstract now available online! https://t.co/ug2BZeAIvi Ishijima, K. et al., 2022: Understanding temporal variations of atmospheric Radon-222 around Japan using model simulations. J. Meteor. Soc. Japan, 100, https://t.co/1InmQuKFBJ. https://t.co/Nl75LLesHA
New Graphical Abstract now available online! https://t.co/ug2BZeAIvi Ishijima et al., 2022: Understanding temporal variations of atmospheric radon-222 around Japan using model simulations. JMSJ, 100, https://t.co/1InmQuKFBJ. https://t.co/bgNnUYsVNF

収集済み URL リスト