著者
中村 大介
出版者
The Philosophy of Science Society, Japan
雑誌
科学哲学 (ISSN:02893428)
巻号頁・発行日
vol.43, no.2, pp.2_67-2_79, 2010 (Released:2011-04-01)
参考文献数
10

This paper aims to interpret Jean Cavaillès' philosophical position proposed in his early works as a reconstruction of Kant's epistemology. Kant's mathematical epistemology consists of three principal components: (a) the pure concept of the understanding, (b) intellectual and sensible schemata produced by the imagination, and (c) sensible intuition. First, as a result of Gödel's incompleteness theorems, Cavailles extends (c) to cover intellectual intuition. Then, under the influence of Hilbert's conceptions of sign, he replaces (b) with the concept of sign as intellectual-sensible mixture, and (a) with certain mathematical concept. Finally, Cavaillès uses this transcendental structure to propose a new idea about the problem of the foundations of mathematics.

言及状況

外部データベース (DOI)

はてなブックマーク (1 users, 1 posts)

Twitter (1 users, 2 posts, 0 favorites)

JPSSJ : Vol. 43 (2010) , No. 2 pp.2_67-2_79 http://t.co/4tHuFSqr
JPSSJ : Vol. 43 (2010) , No. 2 pp.2_67-2_79 http://t.co/4tHuFSqr

収集済み URL リスト