著者
安井 真也 富樫 茂子 下村 泰裕 坂本 晋介 宮地 直道 遠藤 邦彦
出版者
特定非営利活動法人 日本火山学会
雑誌
火山 (ISSN:04534360)
巻号頁・発行日
vol.43, no.2, pp.43-59, 1998-04-30 (Released:2017-03-20)
参考文献数
22

A large amount of pyroclastic materials (ca. 1.7 km3) was erupted during the 1707 eruption of Fuji Volcano. Variety of lithic fragments has been recognized in the pyroclastic fall deposits, namely, accessory and accidental lava fragments, gabbros, and granitoids. A great variety of petrologic features is observed in gabbroic fragments consisting of olivine gabbro norite, gabbro norite, troctolite and anorthosite. The gabbros are divided into O, P and F groups on the basis of modal ratios of olivine, plagioclase and Fe-Ti oxide. O group mainly consists of plagioclase and olivine with minor amounts of pyroxenes and Fe-Ti oxide. O group is considered to have been adcumulated in the lower part of magma chamber because of their high depletion in incompatible elements, their well-sorted grain size and sedimentary structure. P group is composed of plagioclase, pyroxenes and minor amounts of olivine and Fe-Ti oxide. F group is similar to P group, but is enriched in Fe-Ti oxide. P and F groups are orthocumulates and may be solidified in the upper part and margin of magma chamber or dike because of their porphyritic texture. Such a variety of gabbros may correspond to the difference in location of the single gabbroic body beneath Fuji Volcano. The estimated source magma of the gabbros is similar to the basalt of Fuji Volcano in chemical and mineralogical compositions indicating that they are cognate origin. Chemical compositions of olivine and pyroxenes become magnesian and those of plagioclase become calcic with the decreasing of bulk-rock FeO*/MgO ratio. It suggests that they are the products of continuous fractional crystallization. The magma of the 1707 eruption could have come up from under the gabbroic body, which was the solidified basaltic magma chamber, and have caught and brought the rocks from the gabbroic body up to the surface as cognate xenoliths during the eruption.

言及状況

外部データベース (DOI)

Twitter (1 users, 1 posts, 0 favorites)

宝永テフラのハンレイ岩については宮地さんたちの別論文もある。https://t.co/FoxfUfLbrw

収集済み URL リスト