著者
赤池 弘次
出版者
一般社団法人日本物理学会
雑誌
日本物理學會誌 (ISSN:00290181)
巻号頁・発行日
vol.35, no.7, pp.608-614, 1980-07-05
被引用文献数
2

L. Boltzmannによって導入されたエントロピーを統計的分布の確率の対数とする解釈は, 統計と確率との本質的な関係を明らかにする歴史的な貢献である. 数理統計学の発展は, このBoltzmannの業績に対する認識を欠いたままにすすめられたが, 最も著しい成果とみなされるものは常にこの確率論的エントロピーの概念に密接した研究によって得られている. 予測の視点と確率論的エントロピー概念との結合によって, 統計的方法の展開に有効な統一的視点が得られるとするのが筆者の主張である. これによって尤度概念の役割とその重要性に客観的な説明が与えられ, 従来問題視されたベイズ(Bayes)理論の実際的利用への道が開かれる.

言及状況

Twitter (2 users, 2 posts, 0 favorites)

あと赤池 弘次「エントロピーとモデルの尤度」もこの辺のもやもやを解くのに役に立った http://ci.nii.ac.jp/naid/110002074603

収集済み URL リスト