著者
コンヴェール マクシム 深山 覚 中野 倫靖 高道 慎之介 猿渡 洋 後藤 真孝
雑誌
研究報告音楽情報科学(MUS) (ISSN:21888752)
巻号頁・発行日
vol.2018-MUS-120, no.1, pp.1-8, 2018-08-14

ニューラルネットワークは自動和声付けにおいて有望な技術である.膨大なデータセットを元に,入力と出力の複雑な依存関係を学習することができるため,旋律と和音の依存関係も扱うことができる.ニューラルネットワークの性能はその入力と出力情報の表現方法が強く影響する.しかし,従来の自動和声付け研究では,出力情報である和音の表現方法について深くは検討されておらず,テンションノートといった和音の詳細な構造が最大限活用されてこなかった.和音の表現方法を変えることで,旋律と和音の関係を更に細かく学習できると考えられる.そこで本研究では,和音の表現方法の違いが Recurrent Neural Network (RNN) による自動和声付けの性能にどれほど影響するかを調査する.従来の表現方法を含む 4 つの異なる和音表現方法に基づいて Gated Recurrent Unit (GRU) を用いたニューラルネットワークを構築し,それらの性能を比較した.実験の結果,和音の構成音を陽に表現した表現方法を用いると,従来の和音ラベル形式を使った場合に近い性能に達成するだけでなく,構成音の細かな違いに対応できる多機能な自動和声付けモデルの構築を可能とすることがわかった.