- 著者
-
金子 卓弘
亀岡 弘和
北条 伸克
井島 勇祐
平松 薫
柏野 邦夫
- 雑誌
- 研究報告音声言語情報処理(SLP) (ISSN:21888663)
- 巻号頁・発行日
- vol.2016-SLP-114, no.20, pp.1-6, 2016-12-13
統計的パラメトリック音声合成は,その柔軟性と省メモリ性などの利点により広く使われている. しかし,この手法で生成した音声パラメータは,学習の際の統計的平均化によって過剰な平滑化が生じ,合成した音声は肉声感が失われる傾向がある. この問題に対し,本稿では,敵対的学習を用いて取得したポストフイルタを用いることにより,失われた肉声感を再構成する手法を提案する.従来研究でも,系列内変動や変調スペクトルに着目して肉声感を取り戻そうという試みはあるが,これらは経験的発見に基づくものであり,合成音声と自然音声の差異の一部に対処しているに過ぎない. これに対して,提案手法は敵対的学習を用いながら,合成音声と自然音声とのギャップを埋めるようなポストフイルタをデータから直接学習しようとするものである. これにより,合成音声の音声特徴量を真の音声の音声特徴量の分布に近づくように変換するポストフイルタを得ることができる.実験では,提案手法を用いることにより,合成音声から分析合成音声に匹敵する音声が得られることを示す.