著者
今野 礼二
出版者
明治大学
雑誌
明治大学科学技術研究所紀要 (ISSN:03864944)
巻号頁・発行日
vol.13, pp."10-1"-"10-8", 1974

Let M be a Riemannian manifold of the form (r_0, ∞)×S^<n-1>, S^<n-1> being the (n-1)-sphere. We suppose that the metric of M is given by ds^2=dr^2+ρ(r)^2ds'^2 and we consider on M the Schrodinger-type equation -Δu+qu=λu, λ>0. The aim of this paper is to find relations between growth of the solutions at ∞ and the functions ρ and q.