著者
村上 聡一朗 渡邉 亮彦 宮澤 彬 五島 圭一 柳瀬 利彦 高村 大也 宮尾 祐介
出版者
一般社団法人 言語処理学会
雑誌
自然言語処理 (ISSN:13407619)
巻号頁・発行日
vol.27, no.2, pp.299-328, 2020-06-15 (Released:2020-09-15)
参考文献数
54

本稿では,日経平均株価の市況コメントを生成するタスクを例として,時系列数値データの多様な特徴を抽出してテキスト化する手法を提案する.日経平均株価の市況コメントでは価格の変動の特徴だけが表出されるわけではなく,価格の履歴を参照する表現,時系列データの変化を示す表現,テキストが書かれる時間帯に依存する表現が見られる.また,数値に言及する場合は,価格が直接言及されることもあれば,前日からの増減幅や それらを切り上げ・切り捨てした値などが用いられることもある.本研究では,エンコーダ・デコーダモデルをベースラインとし,上記のような多様な特徴を自動抽出してテキスト化するためのエンコード/デコード手法を探求する.まず,株価の短期的・長期的な変化を捉えるために,エンコーダへの入力として短期的および長期的な時系列株価データを与える.デコード時には,テキストが書かれる時間帯に依存する表現を生成するために,時間帯情報を導入する.また,デコーダが数値に言及する際,数値の演算操作を推定して計算することで株価の数値表現を生成する.実験では,自動評価および情報性・流暢性に関する人手評価を行い, 提案手法によって上記の特徴を捉えた質の高い株価の市況コメントの生成が可能になることを示した.