- 著者
-
呂 良誠
許 俊杰
拜 亦名
- 出版者
- 一般社団法人 人工知能学会
- 雑誌
- 人工知能学会第二種研究会資料 (ISSN:24365556)
- 巻号頁・発行日
- vol.2022, no.FIN-029, pp.39-46, 2022-10-08 (Released:2022-10-01)
This paper targets to predict overnight stock movement by taking contextualized news and stock information into account, using the Pre-trained Language Model (PLM) that was recently popular in Natural Language Processing (NLP) field. We proposed a model in which, given a piece of news and a stock code, the model can predict its overnight stock movement by utilizing combined news-stock embedding. Such embedding consists of (1) the contextualized embedding that contains the semantics of such a piece of news produced by a language model trained on a set of news and its paired stock movement. (2) The contextualized embedding is produced by a PLM trained on the information of stocks. Moreover, we introduce news augmentation on multiple pieces of news for the input and study its effect, respectively.