著者
玉城翔 當間愛晃 赤嶺有平 山田孝治 遠藤聡志
雑誌
第77回全国大会講演論文集
巻号頁・発行日
vol.2015, no.1, pp.47-49, 2015-03-17

入力データからの特徴抽出器としての機能を持つニューラルネットにおいて、深い階層構造の構築は、より抽象度の高い特徴表現の獲得を可能にしている。更に、この特徴の汎化能力の向上にDropoutという技術が大きく貢献している。このDropoutにおいて経験的観点でのパラメータ設定が通例だが、その理由や妥当性については十分な検証がされていない。パラメータ設定によっては学習コストが高くなることも想定されるが、問題の複雑さ、用意したニューロン数、接続前後のニューロン状況等に応じて適切なDropout率があると考えられる。そこで、我々はニューラルネットにおける評価関数の値を使い、最適なDropout率の設定が可能かどうかの検証をする。