著者
Elhussein F Mourad Mohamed S Sarhan Hassan-Sibroe A Daanaa Mennatullah Abdou Ahmed T Morsi Mohamed R Abdelfadeel Hend Elsawey Rahma Nemr Mahmoud El-Tahan Mervat A Hamza Mohamed Abbas Hanan H Youssef Abdelhadi A Abdelhadi Wafaa M Amer Mohamed Fayez Silke Ruppel Nabil A Hegazi
出版者
日本微生物生態学会・日本土壌微生物学会
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
pp.ME17135, (Released:2018-02-23)
被引用文献数
22

In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S’, H’, and D’) based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.