- 著者
-
Akira IWAKAWA
Tatsuro SHODA
Ryosuke MAJIMA
Son Hoang PHAM
Akihiro SASOH
- 出版者
- THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
- 雑誌
- TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES (ISSN:05493811)
- 巻号頁・発行日
- vol.60, no.5, pp.303-311, 2017 (Released:2017-09-04)
- 参考文献数
- 32
- 被引用文献数
-
13
Supersonic drag reduction performance using repetitive pulse energy depositions over blunt bodies was experimentally studied under two Mach numbers. The normalized drag reduction and energy deposition efficiency of Mach-1.92 over a 10-mm-dia. blunt-cylinder model were 8% and 1.2 at most, respectively. On the other hand, these values at Mach-3.20 over the same model were 22% and 6.2, respectively. The shock-wave deformation period using single-pulse energy deposition at Mach-3.20 was 64 μs. This duration was shorter than that of 80 μs at Mach-1.92, but the deformation magnitude on the model center axis of 40% at Mach-3.20 was larger than that of 15% at Mach-1.92. These experimental characteristics were consistent as solutions of the Riemann problem. Moreover, a drag reduction performance was much improved with a larger model diameter of 20 mm. Therefore, it has been experimentally demonstrated that the drag reduction performance due to energy deposition improves much at a high Mach number and with large model dimensions.