著者
Arai Asao
出版者
Department of Mathematics, Hokkaido University
雑誌
Hokkaido University Preprint Series in Mathematics
巻号頁・発行日
vol.1118, pp.1-23, 2018-10-23

It is shown that an irreducible representation of the CCR over a dense subspace of a boson Fock space is associated with a quantum system whose space configuration may give rise to Casimir effect in the context of a quantum scalar field and that it is inequivalent to the Fock representation of the same CCR. A quantum scalar field is constructed from the representation. A new feature of the analysis is to treat a singular Bogoliubov transformation, which is different from the usual bosonic Bogoliubov transformation and from which the inequivalent irreducible representation of the CCR is constructed.
著者
Arai Asao
出版者
京都大学数理解析研究所
雑誌
数理解析研究所講究録 (ISSN:18802818)
巻号頁・発行日
vol.2123, pp.101-117, 2019-08

The Casimir effect in the case of a quantum scalar field is considered in view of representation theory of canonical commutation relations (CCR) with infinite degrees of freedom. It is shown that a very singular irreducible representation of the CCR over an inner product space mathscr{E} is associated with the Casimir effect and it is inequivalent to the Fock representation ofthe CCR over mathscr{E}.