著者
Jake P. Greenhalgh Daniel Amund
出版者
Food Safety Commission, Cabinet Office, Government of Japan
雑誌
Food Safety (ISSN:21878404)
巻号頁・発行日
pp.D-19-00004, (Released:2019-09-24)
参考文献数
26
被引用文献数
8

Edible insects present a potential solution to increasing global food insecurity. However, there is limited research on the microbial hazards they may pose. These include opportunistic pathogens like Cronobacter spp. (formerly Enterobacter sakazakii). In this study, nine types of ready-to-eat edible insect products purchased in the UK were examined for their microbial load (total aerobic count, total Enterobacteriaceae count), and screened for the presence of Cronobacter sakazakii(C. sakazakii) by selective enrichment and plating on chromogenic agar. While microbial load was generally low, presumptive Cronobacter spp. were detected in five of the edible insect products. Four of the isolates were identified as C. sakazakii, using the Remel RapID ONE biochemical test kit. Genotypic characterisation of the isolates by ITS-PCR, however, demonstrated that the isolates may be other species of Cronobacter instead. Further studies into understanding microbial hazards linked to edible insects for human consumption are required.
著者
Jake P. Greenhalgh Daniel Amund
出版者
Food Safety Commission, Cabinet Office, Government of Japan
雑誌
Food Safety (ISSN:21878404)
巻号頁・発行日
vol.7, no.3, pp.74-78, 2019 (Released:2019-09-27)
参考文献数
26
被引用文献数
8

Edible insects present a potential solution to increasing global food insecurity. However, there is limited research on the microbial hazards they may pose. These include opportunistic pathogens like Cronobacter spp. (formerly Enterobacter sakazakii). In this study, nine types of ready-to-eat edible insect products purchased in the UK were examined for their microbial load (total aerobic count, total Enterobacteriaceae count), and screened for the presence of Cronobacter sakazakii(C. sakazakii) by selective enrichment and plating on chromogenic agar. While microbial load was generally low, presumptive Cronobacter spp. were detected in five of the edible insect products. Four of the isolates were identified as C. sakazakii, using the Remel RapID ONE biochemical test kit. Genotypic characterisation of the isolates by ITS-PCR, however, demonstrated that the isolates may be other species of Cronobacter instead. Further studies into understanding microbial hazards linked to edible insects for human consumption are required.