- 著者
-
Li WANG
Douglas H. SWEET
- 出版者
- The Japanese Society for the Study of Xenobiotics
- 雑誌
- Drug Metabolism and Pharmacokinetics (ISSN:13474367)
- 巻号頁・発行日
- vol.28, no.3, pp.220-228, 2013 (Released:2013-06-25)
- 参考文献数
- 44
- 被引用文献数
-
26
When herbal products are used in combination therapy with drugs, alterations in pharmacokinetics, pharmacodynamics, and toxicity can result. Many active components of herbal products are organic anions, and human organic anion transporter 1 (hOAT1, SLC22A6), hOAT3 (SLC22A8), and hOAT4 (SLC22A11) have been identified as potential sites of drug-drug interactions. Therefore, we assessed the effects of lithospermic acid (LSA), rosmarinic acid (RMA), salvianolic acid A (SAA), salvianolic acid B (SAB), and tanshinol (TSL), components of the herbal medicine Danshen, on the function of these transporters. Kinetic analysis demonstrated a competitive mechanism of inhibition for all five. Ki values (µM) were estimated as 20.8 ± 2.1 (LSA), 0.35 ± 0.06 (RMA), 5.6 ± 0.3 (SAA), 22.2 ± 1.9 (SAB), and 40.4 ± 12.9 (TSL) on hOAT1 and as 0.59 ± 0.26 (LSA), 0.55 ± 0.25 (RMA), 0.16 ± 0.03 (SAA), 19.8 ± 8.4 (SAB), and 8.6 ± 3.3 (TSL) on hOAT3. No significant inhibition of hOAT4 activity by TSL was observed. Using published human pharmacokinetic values, unbound Cmax/Ki ratios were calculated as an indicator of in vivo drug-drug interaction potential. Analysis indicated a strong interaction potential for RMA and TSL on both hOAT1 and hOAT3 and for LSA on hOAT3. Thus, herb-drug interactions may occur in vivo in situations of co-administration of Danshen and clinical therapeutics known to be hOAT1/hOAT3 substrates.