- 著者
-
Gou Nakamura
- 出版者
- Department of Mathematics, Tokyo Institute of Technology
- 雑誌
- Kodai Mathematical Journal (ISSN:03865991)
- 巻号頁・発行日
- vol.35, no.1, pp.138-156, 2012 (Released:2012-03-30)
- 参考文献数
- 4
Following the idea of P. Schmutz Schaller, we shall consider a parametrization of the Teichmüller space $\mathcal{T}$2 of compact Riemann surfaces of genus two. In the first part of this paper, we calculate the coordinates of 4 kinds of surface uniformized by Fuchsian groups whose fundamental regions can be the regular octagon. In the second part, we give a characterization of $\mathcal{T}$2 in R7.