著者
Hong-Xia Xie Yan Feng Xue-Yong Yu Yu-Ning Hu
出版者
Fuji Technology Press Ltd.
雑誌
Journal of Advanced Computational Intelligence and Intelligent Informatics (ISSN:13430130)
巻号頁・発行日
vol.27, no.1, pp.105-118, 2023-01-20 (Released:2023-01-20)
参考文献数
25
被引用文献数
1

As a new type of digital currency, Bitcoin is considered as “future gold” by various scholars. Therefore, this study considers Bitcoin and gold as a group of hedging assets to conduct investment research and it also discusses the investment rules between Bitcoin and gold: prediction of the rise and fall of Bitcoin, comparison of the characteristics of Bitcoin and gold, and the impact of the transaction procedures of Bitcoin and gold on the final trading results, and formulates trading strategies through optimization algorithms. Then, four machine learning algorithms, i.e., LSTM, BP neural network, Adaboost, and Bagging, are introduced to predict the rise and fall of gold and Bitcoin the next day, and then, the entropy weight method is used to synthesize four predicted results to ensure the robustness of the predicted results. To establish the optimal trading strategy, this study considers the maximum expected return as the goal to develop a single-objective optimization model and historical five-day price volatility as a risk factor. In this study, ant colony, simulated annealing, and genetic algorithms are used to solve the single-objective optimization model. Finally, we conclude that Bitcoin, similar to other financial assets, e.g., gold, is sensitive to shocks and volatile and possesses a relatively quiet cycle. When Bitcoin has an asymmetric impact, Bitcoin and gold can equally treat transactions.