著者
Xudong Song Guangfei Zhou Zhenliang Zhang Huiming Zhang Lin Xue Hui Wang Mingliang Shi Huhua Lu Yuxiang Mao Guoqing Chen Xiaolan Huang Hongjian Zheng Derong Hao
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.73, no.3, pp.261-268, 2023 (Released:2023-07-27)
参考文献数
36

Ear tip-barrenness (ETB), which results from aborted kernels or infertile florets at the ear tip, is an undesirable factor affecting the yield and quality of waxy maize. To uncover the genetic basis of ETB, a genome-wide association study (GWAS) was conducted using the genotype with 27,354 SNPs and phenotype with three environments. Five SNPs that distributed on chromosomes 1, 3 and 6, were identified to be significantly associated with ETB based on the threshold of false discovery rate (FDR) at 0.05. Among these significant loci, three SNPs were clustered together and colocalized with genomic regions previously reported. The average length of ETB decreased almost linearly from the inbred lines containing no favorable alleles across the three loci (1.75 cm) to those with one (1.18 cm), two (0.94 cm) and three (0.65 cm) favorable alleles. Moreover, three important genes, Zm00001d030028, Zm00001d041510 and Zm00001d038676 were predicted for three significant QTLs, respectively. These results promote the understanding genetic basis for ETB and will be useful for breeding waxy maize varieties with high-quality and high-yield.
著者
YingJie Kang YiLei Chen JieMing Fang YanWen Huang Hui Wang ZhiGang Gong SongHua Zhan WenLi Tan
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0084, (Released:2021-09-17)
参考文献数
23
被引用文献数
1

Purpose: To compare the performance of a 12-channel flexible head coil (HFC12) with commercial 16-channel (HRC16) and 24-channel (HRC24) rigid coils.Methods: The phantom study was performed on a 1.5 T MR scanner with HFC12, HRC16, and HRC24. The SNR and noise correlation matrix of T1WI, T2WI, and diffusion weighted imaging (DWI) were measured. The SNR profiles were created according to the SNR. In addition, 1/g-factors were calculated in different acceleration directions. In the in vivo study, T1WI, T2WI, and DWI were performed in one healthy volunteer with three different coils. The SNR and noise correlation matrix were measured.Results: In the phantom study and in vivo study, the SNR of HFC12 in the transverse, sagittal, and coronal planes was the highest, followed by HRC24, and that of HRC16 was the lowest. The SNR profiles showed that the SNR at the edge of HFC12 was the highest. The mean value of the noise correlation matrix of HFC12 was the highest. The 1/g-factor results showed that HFC12 obtained the best acceleration ability in the head–foot acceleration direction when the reduction factor was set to two. The SNR of HFC12 in most cortices was significantly higher than that of HRC16 and HRC24, except in the occipital cortex. The SNR of HRC24 in the occipital cortex was higher than that of HFC12.Conclusion: The SNR of HFC12 in T1WI, T2WI, and DWI was better than that of the HRC24 and HFC16. The SNR of HFC12 in the cortex was significantly higher than that of the commercial rigid head coil, except in the occipital cortex.