In contrast to pathogens, the effects of environmental microbes on the water quality in baths have not yet been examined in detail. We herein focused on a public bath in which groundwater was pumped up as bath water and disinfected by chlorination. Ammonia in groundwater is oxidized to nitrite, thereby reducing residual chlorine. A batch-culture test and bacterial community analysis revealed that ammonia-oxidizing bacteria accumulated nitrite and had higher resistance to chlorination than nitrite-oxidizing bacteria. These results demonstrate that the difference in resistance to chlorination between ammonia-oxidizing and nitrite-oxidizing bacteria may lead to the accumulation of nitrite in baths using groundwater.
Interactions between autotrophic nitrifiers and heterotrophs have attracted considerable attention in microbial ecology. However, the mechanisms by which heterotrophs affect the physiological activity of and nitrogen metabolism in autotrophic nitrite oxidizers remain unclear. We herein focused on nitrite-oxidizing Candidatus Nitrotoga and compared an axenic culture including only Ca. Nitrotoga with a co-culture of both Ca. Nitrotoga and Acidovorax in physiological experiments and transcriptomics. In the co-culture with Acidovorax, nitrite consumption by Ca. Nitrotoga was promoted, and some genes relevant to nitrogen metabolism in Ca. Nitrotoga were highly expressed. These results provide insights into the mechanisms by which co-existing heterotrophs affect autotrophic nitrifiers.