著者
Hiroyuki Akai Koichiro Yasaka Haruto Sugawara Taku Tajima Masaaki Akahane Naoki Yoshioka Kuni Ohtomo Osamu Abe Shigeru Kiryu
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2022-0020, (Released:2022-07-09)
参考文献数
27
被引用文献数
3

Purpose: This study aimed to evaluate whether the image quality of 1.5T magnetic resonance imaging (MRI) of the knee is equal to or higher than that of 3T MRI by applying deep learning reconstruction (DLR).Methods: Proton density-weighted images of the right knee of 27 healthy volunteers were obtained by 3T and 1.5T MRI scanners using similar imaging parameters (21 for high resolution image and 6 for normal resolution image). Commercially available DLR was applied to the 1.5T images to obtain 1.5T/DLR images. The 3T and 1.5T/DLR images were compared subjectively for visibility of structures, image noise, artifacts, and overall diagnostic acceptability and objectively. One-way ANOVA and Friedman tests were used for the statistical analyses.Results: For the high resolution images, all of the anatomical structures, except for bone, were depicted significantly better on the 1.5T/DLR compared with 3T images. Image noise scored statistically lower and overall diagnostic acceptability scored higher on the 1.5T/DLR images. The contrast between lateral meniscus and articular cartilage of the 1.5T/DLR images was significantly higher (5.89 ± 1.30 vs. 4.34 ± 0.87, P < 0.001), and also the contrast between medial meniscus and articular cartilage of the 1.5T/DLR images was significantly higher (5.12 ± 0.93 vs. 3.87 ± 0.56, P < 0.001). Similar image quality improvement by DLR was observed for the normal resolution images.Conclusion: The 1.5T/DLR images can achieve less noise, more precise visualization of the meniscus and ligaments, and higher overall image quality compared with the 3T images acquired using a similar protocol.
著者
Akira Kunimatsu Koichiro Yasaka Hiroyuki Akai Haruto Sugawara Natsuko Kunimatsu Osamu Abe
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2020-0159, (Released:2021-03-10)
参考文献数
79
被引用文献数
8

Texture analysis, as well as its broader category radiomics, describes a variety of techniques for image analysis that quantify the variation in surface intensity or patterns, including some that are imperceptible to the human visual system. Cerebral gliomas have been most rigorously studied in brain tumors using MR-based texture analysis (MRTA) to determine the correlation of various clinical measures with MRTA features. Promising results in cerebral gliomas have been shown in the previous MRTA studies in terms of the correlation with the World Health Organization grades, risk stratification in gliomas, and the differentiation of gliomas from other brain tumors. Multiple MRTA studies in gliomas have repeatedly shown high performance of entropy, a measure of the randomness in image intensity values, of either histogram- or gray-level co-occurrence matrix parameters. Similarly, researchers have applied MRTA to other brain tumors, including meningiomas and pediatric posterior fossa tumors.However, the value of MRTA in the clinical use remains undetermined, probably because previous studies have shown only limited reproducibility of the result in the real world. The low-to-modest generalizability may be attributed to variations in MRTA methods, sampling bias that originates from single-institution studies, and overfitting problems to a limited number of samples.To enhance the reliability and reproducibility of MRTA studies, researchers have realized the importance of standardizing methods in the field of radiomics. Another advancement is the recent development of a comprehensive assessment system to ensure the quality of a radiomics study. These two-way approaches will secure the validity of upcoming MRTA studies. The clinical use of texture analysis in brain MRI will be accelerated by these continuous efforts.