著者
Faryal Ijaz Koji Ikegami
出版者
Japan Society for Cell Biology
雑誌
Cell Structure and Function (ISSN:03867196)
巻号頁・発行日
pp.21002, (Released:2021-01-26)
被引用文献数
9

Stable cell lines and animal models expressing tagged proteins are important tools for studying behaviors of cells and molecules. Several molecular biology technologies have been applied with varying degrees of success and efficiencies to establish cell lines expressing tagged proteins. Here we applied CRISPR/Cas9 for the knock-in of tagged proteins into the 5’UTR of the endogenous gene loci. With this 5’UTR-targeting knock-in strategy, stable cell lines expressing Arl13b-Venus, Reep6-HA, and EGFP-alpha-tubulin were established with high efficiencies ranging from 50 to 80% in antibiotic selected cells. The localization of the knock-in proteins were identical to that of the endogenous proteins in wild-type cells and showed homogenous expression. Moreover, the expression of knock-in EGFP-alpha-tubulin from the endogenous promoter was stable over long-term culture. We further demonstrated that the fluorescent signals were enough for a long time time-lapse imaging. The fluorescent signals were distinctly visible during the whole duration of the time-lapse imaging and showed specific subcellular localizations. Altogether, our strategy demonstrates that 5’UTR is an amenable site to generate cell lines for the stable expression of tagged proteins from endogenous loci in mammalian cells.Key words: CRISPR/Cas9, NHEJ, Knock-in, Primary Cilium, UTR, Tubulin
著者
Koji Ikegami Mitsutoshi Setou
出版者
日本細胞生物学会
雑誌
Cell Structure and Function (ISSN:03867196)
巻号頁・発行日
vol.35, no.1, pp.15-22, 2010 (Released:2010-04-13)
参考文献数
77
被引用文献数
22 52

Microtubules (MTs) play specialized roles in a wide variety of cellular events, e.g. molecular transport, cell motility, and cell division. Specialized MT architectures, such as bundles, axonemes, and centrioles, underlie the function. The specialized function and highly organized structure depend on interactions with MT-binding proteins. MT-associated proteins (e.g. MAP1, MAP2, and tau), molecular motors (kinesin and dynein), plus-end tracking proteins (e.g. CLIP-170), and MT-severing proteins (e.g. katanin) interact with MTs. How can the MT-binding proteins know temporospatial information to associate with MTs and to properly play their roles? Post-translational modifications (PTMs) including detyrosination, polyglutamylation, and polyglycylation can provide molecular landmarks for the proteins. Recent efforts to identify modification-regulating enzymes (TTL, carboxypeptidase, polyglutamylase, polyglycylase) and to generate genetically manipulated animals enable us to understand the roles of the modifications. In this review, we present recent advances in understanding regulation of MT function, structure, and stability by PTMs.