著者
Tokuji Utsu Yosihiko Ogata Ritsuko S Matsu'ura
出版者
The Seismological Society of Japan, The Volcanological Society of Japan, The Geodetic Society of Japan
雑誌
Journal of Physics of the Earth (ISSN:00223743)
巻号頁・発行日
vol.43, no.1, pp.1-33, 1995 (Released:2009-04-30)
参考文献数
139
被引用文献数
587 968

The Omori formula n(t)=K(t+c)-1 and its modified form n(t)=K(t+c)-P have been successfully applied to many aftershock sequences since the former was proposed just 100 years ago. This paper summarizes studies using these formulae. The problems of fitting these formulae and related point process models to observational data are discussed mainly. Studies published during the last 1/3 century confirmed that the modified Omori formula generally provides an appropriate representation of the temporal variation of aftershock activity. Although no systematic dependence of the index p has been found on the magnitude of the main shock and on the lowest limit of magnitude above which aftershocks are counted, this index (usually p = 0.9-1.5) differs from sequence to. sequence. This variability may be related to the tectonic condition of the region such as structural heterogeneity, stress, and temperature, but it is not clear which factor is most significant in controlling the p value. The constant c is a controversial quantity. It is strongly influenced by incomplete detection of small aftershocks in the early stage of sequence. Careful analyses indicate that c is positive at least for some sequences. Point process models for the temporal pattern of shallow seismicity must include the existence of aftershocks, most suitably expressed by the modified Omori law. Among such models, the ETAS model seems to best represent the main features of seismicity with only five parameters. An anomalous decrease in aftershock activity below the level predicted by the modified Omori formula sometimes precedes a large aftershock. An anomalous decrease in seismic activity of a region below the level predicted by the ETAS model is sometimes followed by a large earthquake in the same or in a neighboring region.
著者
Mitsuhiro MATSU'URA Takaya IWASAKI Yasunori SUZUKI Ryosuke SATO
出版者
The Seismological Society of Japan, The Volcanological Society of Japan , The Geodetic Society of Japan
雑誌
Journal of Physics of the Earth (ISSN:00223743)
巻号頁・発行日
vol.28, no.2, pp.119-143, 1980 (Released:2009-04-30)
参考文献数
28
被引用文献数
30 54

An inverse method to find optimum fault parameters from geodetic data with random errors is extended so as to be applicable to a case of the data including a systematic error caused by movements of reference points in triangulation. Application of the new inverse method to static displacement data associated with the Kanto earthquake of 1923 yields a dislocation source model which adequately explains both the seismological and the geodetic data.From the geodetic data, it is found that the fault motion of the Kanto earthquake is a reverse, right-lateral slip of 4.8m with a slip-angle of 140° on a plane which dips 25° towards N24°E, where the slip-angle is measured counterclockwise from a strike on the fault plane. The fault length, width, and the depth to the upper fault margin are determined as 95km, 54km, and 1.5km respectively. The seismic moment and stress drop of this earthquake are estimated to be 8.4×1027 dyne·cm and 45 bars, respectively.Taking the static fault solution as the basic model, the dynamic process of the fracture is investigated on the basis of the long-period seismograms recorded at Hongo, Tokyo. The result shows that the rupture starts from a relocated hypocenter, 35.41°N, 139.22°E and 13.5km (depth), and extends outwards on the fault plane with a propagating velocity of the rupture front of 2.0km/sec. The rise time of the source time function is assumed to be 5.0sec. The maximum amplitude of acceleration for a frequency range of 0.0-3.3Hz at Tokyo is estimated to be about 280gal for the horizontal component and to be 60gal for the vertical component, by applying an empirical formula to the calculated ground displacements.