著者
Saori Watahiki Nobutada Kimura Atsushi Yamazoe Takamasa Miura Yuji Sekiguchi Naohiro Noda Satoko Matsukura Daisuke Kasai Yoh Takahata Hideaki Nojiri Masao Fukuda
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2018.10.003, (Released:2019-03-08)
参考文献数
36
被引用文献数
7

Bioremediation may affect the ecological system around bioremediation sites. However, little is known about how microbial community structures change over time after the initial injection of degraders. In this study, we have assessed the ecological impact of bioaugmentation using metagenomic and metatranscriptomic approaches to remove trichlorinated ethylene/cis-dichloroethylene (TCE/cDCE) by Rhodococcus jostii strain RHA1 as an aerobic chemical compound degrader. Metagenomic analysis showed that the number of organisms belonging to the genus Rhodococcus, including strain RHA1, increased from 0.1% to 76.6% of the total microbial community on day 0 at the injection site. Subsequently, the populations of strain RHA1 and other TCE/cDCE-degrading bacteria gradually decreased over time, whereas the populations of the anaerobic dechlorinators Geobacter and Dehalococcoides increased at later stages. Metatranscriptomic analysis revealed a high expression of aromatic compound-degrading genes (bphA1-A4) in strain RHA1 after RHA1 injection. From these results, we concluded that the key dechlorinators of TCE/cDCE were mainly aerobic bacteria, such as RHA1, until day 1, after which the key dechlorinators changed to anaerobic bacteria, such as Geobacter and Dehalococcocides, after day 6 at the injection well. Based on the α-diversity, the richness levels of the microbial community were increased after injection of strain RHA1, and the microbial community composition had not been restored to that of the original composition during the 19 days after treatment. These results provide insights into the assessment of the ecological impact and bioaugmentation process of RHA1 at bioremediation sites.
著者
Saori Watahiki Nobutada Kimura Atsushi Yamazoe Takamasa Miura Yuji Sekiguchi Naohiro Noda Satoko Matsukura Daisuke Kasai Yoh Takahata Hideaki Nojiri Masao Fukuda
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
vol.65, no.5, pp.225-233, 2019 (Released:2019-12-19)
参考文献数
36
被引用文献数
1 7

Bioremediation may affect the ecological system around bioremediation sites. However, little is known about how microbial community structures change over time after the initial injection of degraders. In this study, we have assessed the ecological impact of bioaugmentation using metagenomic and metatranscriptomic approaches to remove trichlorinated ethylene/cis-dichloroethylene (TCE/cDCE) by Rhodococcus jostii strain RHA1 as an aerobic chemical compound degrader. Metagenomic analysis showed that the number of organisms belonging to the genus Rhodococcus, including strain RHA1, increased from 0.1% to 76.6% of the total microbial community on day 0 at the injection site. Subsequently, the populations of strain RHA1 and other TCE/cDCE-degrading bacteria gradually decreased over time, whereas the populations of the anaerobic dechlorinators Geobacter and Dehalococcoides increased at later stages. Metatranscriptomic analysis revealed a high expression of aromatic compound-degrading genes (bphA1-A4) in strain RHA1 after RHA1 injection. From these results, we concluded that the key dechlorinators of TCE/cDCE were mainly aerobic bacteria, such as RHA1, until day 1, after which the key dechlorinators changed to anaerobic bacteria, such as Geobacter and Dehalococcocides, after day 6 at the injection well. Based on the α-diversity, the richness levels of the microbial community were increased after injection of strain RHA1, and the microbial community composition had not been restored to that of the original composition during the 19 days after treatment. These results provide insights into the assessment of the ecological impact and bioaugmentation process of RHA1 at bioremediation sites.
著者
Takashi Narihiro Aya Suzuki Kazuaki Yoshimune Tomoyuki Hori Tamotsu Hoshino Isao Yumoto Atsushi Yokota Nobutada Kimura Yoichi Kamagata
出版者
日本微生物生態学会 / 日本土壌微生物学会 / Taiwan Society of Microbial Ecology / 植物微生物研究会
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.29, no.2, pp.154-161, 2014 (Released:2014-07-19)
参考文献数
64
被引用文献数
4 12

Metagenomic screening and conventional cultivation have been used to exploit microbial lipolytic enzymes in nature. We used an indigenous forest soil (NS) and oil-fed enriched soil (OS) as microbial and genetic resources. Thirty-four strains (17 each) of lipolytic bacteria were isolated from the NS and OS microcosms. These isolates were classified into the (sub)phyla Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria, all of which are known to be the main microbial resources of commercially available lipolytic enzymes. Seven and 39 lipolytic enzymes were successfully retrieved from the metagenomic libraries of the NS and OS microcosms, respectively. The screening efficiency (a ratio of positive lipolytic clones to the total number of environmental clones) was markedly higher in the OS microcosm than in the NS microcosm. Moreover, metagenomic clones encoding the lipolytic enzymes associated with Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Armatimonadetes, and Planctomycetes and hitherto-uncultivated microbes were recovered from these libraries. The results of the present study indicate that functional metagenomics can be effectively used to capture as yet undiscovered lipolytic enzymes that have eluded the cultivation-based method, and these combined approaches may be able to provide an overview of lipolytic organisms potentially present in nature.