著者
Kohei Takahashi Xiaojie Li Tatsuki Kunoh Ryo Nagasawa Norio Takeshita Andrew S. Utada
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.38, no.5, pp.ME22089, 2023 (Released:2023-03-23)
参考文献数
61
被引用文献数
1

Microorganisms develop into communities in nearly every environmental niche, which is typically replete with micrometer-scale gaps and features. In each of these habitats, microorganisms adapt to and are affected by their physical environment. Conventional culture methods use glass bottom dishes or millimeter-scale flow cells, which poorly mimic the complexity of natural micrometer-scale environments; therefore, the limitations associated with the creation of microbe-scale environments with granularity hinder the ability to examine their ecological behavior. Microfluidics is a tool that is increasingly being used to study microorganisms because it enables the manipulation of micrometer-scale flows while simultaneously facilitating real-time and live-cell imaging. In this review, we discuss several insights into the behavior of bacteria and fungi that were gained through the adoption of microfluidics to control complex micrometer-scale environments. We also discuss the potential of the increased adoption of this tool.
著者
Shinsuke Shigeto Norio Takeshita
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.6, pp.ME22006, 2022 (Released:2022-04-07)
参考文献数
58
被引用文献数
1

Filamentous fungi grow by the elongation of tubular cells called hyphae and form mycelia through repeated hyphal tip growth and branching. Since hyphal growth is closely related to the ability to secrete large amounts of enzymes or invade host cells, a more detailed understanding and the control of its growth are important in fungal biotechnology, ecology, and pathogenesis. Previous studies using fluorescence imaging revealed many of the molecular mechanisms involved in hyphal growth. Raman microspectroscopy and imaging methods are now attracting increasing attention as powerful alternatives due to their high chemical specificity and label-free, non-destructive properties. Spatially resolved information on the relative abundance, structure, and chemical state of multiple intracellular components may be simultaneously obtained. Although Raman studies on filamentous fungi are still limited, this review introduces recent findings from Raman studies on filamentous fungi and discusses their potential use in the future.