著者
Takato Hara Reina Kumagai Tohru Tanaka Tsuyoshi Nakano Tomoya Fujie Yasuyuki Fujiwara Chika Yamamoto Toshiyuki Kaji
出版者
The Japanese Society of Toxicology
雑誌
The Journal of Toxicological Sciences (ISSN:03881350)
巻号頁・発行日
vol.48, no.12, pp.655-663, 2023 (Released:2023-12-01)
参考文献数
39

Vascular endothelial cell growth is essential for the repair of intimal injury. Perlecan, a large heparan sulfate proteoglycan, intensifies fibroblast growth factor-2 (FGF-2) signaling as a co-receptor for FGF-2 and its receptor, and promotes the proliferation of vascular endothelial cells. Previously, we reported that 2 µM of lead, a toxic heavy metal, downregulated perlecan core protein expression and then suppressed the growth of vascular endothelial cells. However, since the mechanisms involved in the repression of perlecan by lead remains unclear, we analyzed its detailed signaling pathway using cultured bovine aortic endothelial cells. Our findings indicate that 2 µM of lead inhibited protein tyrosine phosphatase (PTP) activity and induced cyclooxygenase-2 (COX-2) via phosphorylation of the epidermal growth factor receptor (EGFR) and its downstream extracellular signal-regulated kinases (ERK1/2). In addition, among the prostanoids regulated by COX-2, prostaglandin I2 (PGI2) specifically contributes to the downregulation of perlecan expression by lead. This study revealed an intracellular pathway—the EGFR-ERK1/2-COX-2-PGI2 pathway activated by inhibition of PTP by lead—as a pathway that downregulates endothelial perlecan synthesis. The pathway is suggested to serve as a mechanism for the repression of perlecan expression, which leads to a delay in cell proliferation by lead.