著者
Tamami Ida Naoko Crofts Satoko Miura Ryo Matsushima Naoko Fujita
出版者
The Japanese Society of Applied Glycoscience
雑誌
Journal of Applied Glycoscience (ISSN:13447882)
巻号頁・発行日
pp.jag.JAG-2021_0015, (Released:2022-03-05)
被引用文献数
1

Amylopectin, which consists of highly branched glucose polymers, is a major component of starch. Biochemical processes that regulate the elongation of glucose polymers and the generation and removal of glucose branches are essential for determining the properties of starch. Starch synthases (SSs) and branching enzyme (BE) mainly form complexes consisting of SSI, SSIIa and BEIIb during endosperm development. Loss of BEIIb in rice is complemented by BEIIa, but the compensatory effects differ depending on the presence or absence of inactive BEIIb. To better understand these compensatory mechanisms, ss2a be2b (+) double mutant, which possessed truncated inactive SSIIa and inactive BEIIb, were analyzed. Soluble proteins separated by gel filtration chromatography showed that SSIIa and BEIIb proteins in the wild-type exhibited a broad range of elution patterns and only small amounts were detected in high molecular mass fractions. In contrast, most of truncated inactive SSIIa and inactive BEIIb from ss2a be2b (+) were found in high molecular mass fractions, and the SSI-SSIIa-BEIIb trimeric protein complex found in the wild-type was likely absent in ss2a be2b (+). Those SSIIa and BEIIb proteins in high molecular mass fractions in ss2a be2b (+) were also identified by mass spectrometry. Parental ss2a single mutant had negligible amounts of SSIIa suggesting that the truncated inactive SSIIa was recruited to high-molecular mass complexes in the presence of inactive BEIIb in ss2a be2b (+) double mutant. In addition, SSIVb might be involved in the formation of alternative protein complexes with <300 kDa in ss2a be2b (+).
著者
Naoko Crofts Ayaka Itoh Misato Abe Satoko Miura Naoko F. Oitome Jinsong Bao Naoko Fujita
出版者
The Japanese Society of Applied Glycoscience
雑誌
Journal of Applied Glycoscience (ISSN:13447882)
巻号頁・発行日
pp.jag.JAG-2018_005, (Released:2018-12-07)
被引用文献数
16

Extra-long chains (ELC) of amylopectin in rice endosperm are synthesized by granule-bound starch synthase I encoded by the Waxy (Wx) gene, which primarily synthesizes amylose. Previous studies showed that single nucleotide polymorphisms (SNP) in intron 1 and exon 6 of the Wx gene influences ELC amount. However, whether these SNPs are conserved among rice cultivars and if any other SNPs are present in the Wx gene remained unknown. Here, we sequenced the Wx gene from 17 rice cultivars with S or L-type amylopectin, including those with known ELC content and those originating in China with unique starch properties, as well as typical japonica and indica cultivars. In addition to the two SNPs described above, an additional SNP correlating with ELC content was found in exon 10. Low ELC cultivars (<3.0 %) had thymine at the splicing donor site of intron 1, Tyr224 in exon 6, and Pro415 in exon 10. Cultivars with moderate ELC content (4.1–6.9 %) had guanine at the splicing donor site of intron 1, Ser224 in exon 6, and Pro415 in exon 10. Cultivars with high ELC content (7.7–13.9 %) had guanine at the splicing donor site of intron 1, Tyr224 in exon 6, and Ser415 in exon 10. The chain length distribution pattern of amylopectin was correlated with the amounts of SSIIa found in starch granules and gelatinization temperature, but not with ELC content. The combinations of SNPs in the Wx gene found in this study may provide useful information for screening specific cultivars with different ELC content.