著者
Joval N. Martinez Arisa Nishihara Mads Lichtenberg Erik Trampe Shigeru Kawai Marcus Tank Michael Kühl Satoshi Hanada Vera Thiel
出版者
Japanese Society of Microbial Ecology · The Japanese Society of Soil Microbiology
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
pp.ME19047, (Released:2019-11-02)
被引用文献数
17

Phototrophic microbial mats are assemblages of vertically layered microbial populations dominated by photosynthetic microorganisms. In order to elucidate the vertical distribution and diversity of phototrophic microorganisms in a hot spring-associated microbial mat in Nakabusa (Japan), we analyzed the 16S rRNA gene amplicon sequences of the microbial mat separated into five depth horizons, and correlated them with microsensor measurements of O2 and spectral scalar irradiance. A stable core community and high diversity of phototrophic organisms dominated by the filamentous anoxygenic phototrophs, Roseiflexus castenholzii and Chloroflexus aggregans were identified together with the spectral signatures of bacteriochlorophylls (BChls) a and c absorption in all mat layers. In the upper mat layers, a high abundance of cyanobacteria (Thermosynechococcus sp.) correlated with strong spectral signatures of chlorophyll a and phycobiliprotein absorption near the surface in a zone of high O2 concentrations during the day. Deeper mat layers were dominated by uncultured chemotrophic Chlorobi such as the novel putatively sulfate-reducing “Ca. Thermonerobacter sp.”, which showed increasing abundance with depth correlating with low O2 in these layers enabling anaerobic metabolism. Oxygen tolerance and requirements for the novel phototroph “Ca. Chloroanaerofilum sp.” and the uncultured chemotrophic Armatimonadetes member type OS-L detected in Nakabusa hot springs, Japan appeared to differ from previously suggested lifestyles for close relatives identified in hot springs in Yellowstone National Park, USA. The present study identified various microenvironmental gradients and niche differentiation enabling the co-existence of diverse chlorophototrophs in metabolically diverse communities in hot springs.
著者
Joval N. Martinez Arisa Nishihara Mads Lichtenberg Erik Trampe Shigeru Kawai Marcus Tank Michael Kühl Satoshi Hanada Vera Thiel
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.34, no.4, pp.374-387, 2019 (Released:2019-12-27)
参考文献数
72
被引用文献数
17

Phototrophic microbial mats are assemblages of vertically layered microbial populations dominated by photosynthetic microorganisms. In order to elucidate the vertical distribution and diversity of phototrophic microorganisms in a hot spring-associated microbial mat in Nakabusa (Japan), we analyzed the 16S rRNA gene amplicon sequences of the microbial mat separated into five depth horizons, and correlated them with microsensor measurements of O2 and spectral scalar irradiance. A stable core community and high diversity of phototrophic organisms dominated by the filamentous anoxygenic phototrophs, Roseiflexus castenholzii and Chloroflexus aggregans were identified together with the spectral signatures of bacteriochlorophylls (BChls) a and c absorption in all mat layers. In the upper mat layers, a high abundance of cyanobacteria (Thermosynechococcus sp.) correlated with strong spectral signatures of chlorophyll a and phycobiliprotein absorption near the surface in a zone of high O2 concentrations during the day. Deeper mat layers were dominated by uncultured chemotrophic Chlorobi such as the novel putatively sulfate-reducing “Ca. Thermonerobacter sp.”, which showed increasing abundance with depth correlating with low O2 in these layers enabling anaerobic metabolism. Oxygen tolerance and requirements for the novel phototroph “Ca. Chloroanaerofilum sp.” and the uncultured chemotrophic Armatimonadetes member type OS-L detected in Nakabusa hot springs, Japan appeared to differ from previously suggested lifestyles for close relatives identified in hot springs in Yellowstone National Park, USA. The present study identified various microenvironmental gradients and niche differentiation enabling the co-existence of diverse chlorophototrophs in metabolically diverse communities in hot springs.
著者
Koji Mori Kenta Sakurai Akira Hosoyama Takeshi Kakegawa Satoshi Hanada
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.35, no.4, pp.ME20046, 2020 (Released:2020-09-18)
参考文献数
43
被引用文献数
11

A novel anaerobic heterotrophic strain, designated strain sy52T, was isolated from a hydrothermal chimney at Suiyo Seamount in the Pacific Ocean. A 16S rRNA gene analysis revealed that the strain belonged to the family Petrotogaceae in the phylum Thermotogae. The strain was mesophilic with optimum growth at 48°C and the phylum primarily comprised hyperthermophiles and thermophiles. Strain sy52T possessed unique genomic characteristics, such as an extremely low G+C content and 6 copies of rRNA operons. Genomic analyses of strain sy52T revealed that amino acid usage in the predicted proteins resulted from adjustments to mesophilic environments. Genomic features also indicated independent adaptions to the mesophilic environment of strain sy52T and Mesotoga species, which belong to the mesophilic lineage in the phylum Thermotogae. Based on phenotypic and phylogenetic evidence, strain sy52T is considered to represent a novel genus and species in the family Petrotogaceae with the proposed name Tepiditoga spiralis gen. nov., sp. nov.