著者
Satoshi Narumi Larry A Fox Keisuke Fukudome Zenichi Sakaguchi Chiho Sugisawa Kiyomi Abe Kaori Kameyama Tomonobu Hasegawa
出版者
(社)日本内分泌学会
雑誌
Endocrine Journal (ISSN:09188959)
巻号頁・発行日
pp.EJ17-0194, (Released:2017-09-01)
被引用文献数
10

Thyroid peroxidase (TPO) deficiency, caused by biallelic TPO mutations, is a well-established genetic form of congenital hypothyroidism (CH). More than 100 patients have been published, and the patients have been diagnosed mostly in the frame of newborn screening (NBS) programs. Correlation between clinical phenotypes and TPO activity remains unclear. Here, we report clinical and molecular findings of two unrelated TPO mutation-carrying mildly hypothyroid patients. The two patients were born at term after an uneventful pregnancy and delivery, and were NBS negative. They sought medical attention due to goiter at age 8 years. Evaluation of the thyroid showed mild elevation of serum TSH levels, normal or slightly low serum T4 levels, high serum T3 to T4 molar ratio, high serum thyroglobulin levels, and high thyroidal 123I uptake. We performed next-generation sequencing-based genetic screening, and found that one patient was compound heterozygous for two novel TPO mutations (p.Asp224del; c.820-2A>G), and the other was homozygous for a previously known mutation (p.Trp527Cys). In vitro functional analyses using HEK293 cells showed that the two amino acid-altering mutations (p.Asp224del and p.Trp527Cys) caused partial loss of the enzymatic activity. In conclusion, we report that TPO mutations with residual activity are associated with mild TPO deficiency, which is clinically characterized by marked goiter, mild TSH elevation, high serum T3 to T4 molar ratio, and high serum thyroglobulin levels. Our findings illuminate the hitherto under-recognized correlation between clinical phenotypes and residual enzymatic activity among patients with TPO deficiency.
著者
Atsushi Hattori Yuko Katoh-Fukui Akie Nakamura Keiko Matsubara Tsutomu Kamimaki Hiroyuki Tanaka Sumito Dateki Masanori Adachi Koji Muroya Shinobu Yoshida Shinobu Ida Marie Mitani Keisuke Nagasaki Tsutomu Ogata Erina Suzuki Kenichiro Hata Kazuhiko Nakabayashi Yoichi Matsubara Satoshi Narumi Toshiaki Tanaka Maki Fukami
出版者
(社)日本内分泌学会
雑誌
Endocrine Journal (ISSN:09188959)
巻号頁・発行日
pp.EJ17-0150, (Released:2017-08-03)
被引用文献数
39

Although mutations in ACAN, FGFR3, NPR2, and SHOX typically lead to skeletal dysplasia, and mutations in GHRHR, GH1, GHR, STAT5B, IGF1, IGFALS, and IGF1R usually underlie hormonal defects of the growth hormone (GH)-insulin-like growth factor 1 (IGF1) axis, such mutations have also been identified in patients with idiopathic short stature (ISS). Of these, SHOX abnormalities are known to account for a certain percentage of ISS cases, whereas the frequency of mutations in the other 10 genes in ISS cohorts remains unknown. Here, we performed next-generation sequencing-based mutation screening of the 10 genes in 86 unrelated Japanese ISS patients without SHOX abnormalities. We searched for rare protein-altering variants. The functional significance of the identified variants was assessed by in silico analyses. Consequently, we identified 18 heterozygous rare variants in 19 patients, including four probable damaging variants in ACAN, six pathogenicity-unknown variants in FGFR3, GHRHR, GHR, and IGFALS, and eight possible benign variants. Pathogenic variants in NPR2, GH1, and IGF1 were absent from our cohort. Unlike previously reported patients with ACAN mutations, our four patients with ACAN variants manifested non-specific short stature with age-appropriate or mildly delayed bone ages, and had parents of normal stature. These results indicate that ACAN mutations can underlie ISS without characteristic skeletal features, and that such mutations are possibly associated with de novo occurrence or low penetrance. In addition, our data imply that mutations in FGFR3, NPR2, and GH-IGF1 axis genes play only limited roles in the etiology of ISS.
著者
Satoshi Narumi Tomonobu Hasegawa
出版者
(社)日本内分泌学会
雑誌
Endocrine Journal (ISSN:09188959)
巻号頁・発行日
pp.EJ15-0131, (Released:2015-03-21)
被引用文献数
1 9

Genetic defects of hormone receptors are the most common form of end-organ hormone resistance. One example of such defects is TSH resistance, which is caused by biallelic inactivating mutations in the TSH receptor gene (TSHR). TSH, a master regulator of thyroid functions, affects virtually all cellular processes involving thyroid hormone production, including thyroidal iodine uptake, thyroglobulin iodination, reuptake of iodinated thyroglobulin and thyroid cell growth. Resistance to TSH results in defective thyroid hormone production from the neonatal period, namely congenital hypothyroidism. Classically, clinical phenotypes of TSH resistance due to inactivating TSHR mutations were thought to vary depending on the residual mutant receptor activity. Nonfunctional mutations in the two alleles produce severe thyroid hypoplasia with overt hypothyroidism (uncompensated TSH resistance), while hypomorphic mutations in at least one allele produce normal-sized thyroid gland with preserved hormone-producing capacity (compensated TSH resistance). More recently, a new subgroup of TSH resistance (nonclassic TSH resistance) that is characterized by paradoxically high thyroidal iodine uptake has been reported. In this article, the pathophysiology and clinical features of TSH resistance due to inactivating TSHR mutations are reviewed, with particular attention to the nonclassic form.