著者
Kwang Whoi Kim Soon-Yeong Chung Dohan Kim
出版者
Research Institute forMathematical Sciences
雑誌
Publications of the Research Institute for Mathematical Sciences (ISSN:00345318)
巻号頁・発行日
vol.29, no.2, pp.289-300, 1993 (Released:2009-01-22)
参考文献数
18
被引用文献数
34

We show that if a C∞-solution u(x, t) of heat equation in R+n+1 does not increase faster than exp[ε(\frac{1}{t}+|x|)] then its boundary value determines a unique Fourier hyperfunction. Also, we prove the decomposition theorem for the Fourier hyper functions. These results generalize the theorems of T. Kawai and T. Matsuzawa for Fourier hyperfunctions and solve a question given by A. Kaneko.