著者
Taeko Mizutani Ryota Mori Misaki Hirayama Yuki Sagawa Kenji Shimizu Yuri Okano Hitoshi Masaki
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
vol.65, no.12, pp.993-1001, 2016 (Released:2016-12-01)
参考文献数
35
被引用文献数
24 24

Sodium lauryl sulfate (SLS), a representative anionic surfactant, is well-known to induce rough skin following single or multiple topical applications. The mechanism by which SLS induces rough skin is thought to result from the disruption of skin moisture function consisting of NMF and epidermal lipids. However, a recent study demonstrated that topically applied SLS easily penetrates into the living cell layers of the epidermis, which suggests that physiological alterations of keratinocytes might cause the SLS-induced rough skin. This study was conducted to clarify the effects of SLS on keratinocytes to demonstrate the contribution of SLS to the induction of rough skin. In addition, the potentials of other widely used anionic surfactants to induce rough skin were evaluated. HaCaT keratinocytes treated with SLS had increased levels of intracellular ROS and IL-1α secretion. Application of SLS on the surface of a reconstructed epidermal equivalent also showed the increased generation of ROS. Further, SLS-treated cells showed an increase of intracellular calpain activity associated with the increase of intracellular Ca2+ concentration. The increase of intracellular ROS was abolished by the addition of BAPTA-AM, a specific chelator of Ca2+. In addition, IL-1α also stimulated ROS generation by HaCaT keratinocytes. An ESR spin-labeling study demonstrated that SLS increased the fluidity of membranes of liposomes and cells. Together, those results indicate that SLS initially interacts with cell membranes, which results in the elevation of intracellular Ca2+ influx. Ca2+ stimulates the secretion of IL-1α due to the activation of calpain, and also increases ROS generation. IL-1α also stimulates ROS generation by HaCaT keratinocytes. We conclude from these results that the elevation of intracellular ROS levels is one of the causes of SLS-induced rough skin. Finally, among the other anionic surfactants tested, sodium lauryl phosphate has less potential to induce rough skin because of its lower generation of ROS.
著者
Madoka Yoshikawa Taeko Mizutani Yuri Okano Hitoshi Masaki
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
vol.69, no.7, pp.719-726, 2020 (Released:2020-07-02)
参考文献数
36
被引用文献数
2 1

Residues of olive fruit (ROF) after the extraction of oils are an increasing source of industrial waste, because olive oil is becoming more popular as a healthy food. It has been reported that olives have some polyphenols that have an antioxidation capability. On the other hand, excess oxidative stress disrupts epidermal barrier function. This study was conducted to determine whether ROF could be utilized as an antioxidant source to reduce industrial wastes and to identify possible active materials to maintain healthy skin. Olive fruits are categorized into two groups depending on the time of harvest, young fruit (YF) and mature fruit (MF). Thus, we examined the antioxidant potentials of extracts from YF and from MF to remove reactive oxygen species (ROS) from biological and chemical aspects. HaCaT keratinocytes cultured with extracts of YF or MF had reduced levels of intracellular ROS in spite of the relatively low chemical capability against ROS scavenging. The biological effects of the YF extract were superior to those of the MF extract. The YF extract showed effective reductions of intracellular ROS and carbonylated proteins that were elevated by the stress-related hormone cortisol. In addition, the YF extract reinforced the intracellular antioxidation capability through the activation of Nrf2 signaling. Taken together, the YF extract was an effective source to reinforce the intracellular antioxidation capability. We conclude from these results that utilizing ROF would lead to the reduction of industrial wastes and would supply active materials to maintain healthy skin.
著者
Yumiko Yamawaki Taeko Mizutani Yuri Okano Hitoshi Masaki
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
vol.70, no.5, pp.647-655, 2021 (Released:2021-05-01)
参考文献数
29
被引用文献数
3

Although extracellular carbonylated proteins (CPs) are found at higher levels in sun-exposed skin, their impact on the cellular functions of fibroblasts and their involvement in the progression of photoaging skin are not fully clarified. In our previous study, we reported that extracellular CPs increase levels of intracellular oxidative stress and result in the accumulation of newly synthesized CPs in normal human dermal fibroblasts (NHDF). Furthermore, fibroblasts exposed to CP-BSA, which is a model of extracellular CPs, had upregulated expression levels of mRNAs encoding matrix metalloproteinase-1 (MMP-1) and interleukin-8/CXCL8 (IL-8/CXCL8). These facts suggested the possibility that extracellular CPs induce a fragile structure in the dermis through the degradation of collagen and elastin. The purpose of this study was to characterize the efficacy of natural carotenoids, such as astaxanthin analogs, produced by Hematococus pluvialis (CHPs) to improve the impaired functions of fibroblasts exposed to CPs. CHPs suppressed the intracellular CP levels elevated by CP-BSA, restored mRNA expression levels of factors involved in the formation and assembly of collagen and elastin fibers and improved the formation of those fibers impaired by CP-BSA. We conclude that CHPs function as antiaging substances due to their restoration of the impaired formation of collagen and elastin fibers caused by extracellular soluble CPs.