著者
Takeshi HOSHIKAWA Kazukiyo YAMAMOTO
出版者
The Remote Sensing Society of Japan
雑誌
日本リモートセンシング学会誌 (ISSN:02897911)
巻号頁・発行日
vol.40, no.1, pp.13-19, 2020-01-31 (Released:2020-07-07)
参考文献数
28

Pine wilt disease is one of the most destructive disease of pine forests. It is important to detect and exterminate infected trees for preservation of the forest. We demonstrated a novel method combining individual tree detection (ITD) and classification by logistic regression using unmanned aerial vehicle (UAV) images for the mapping of infected trees. In the ITD phase, 50 % and 84 % of damaged trees were automatically detected from the 3D point cloud generated from the UAV images using the local maximum filter. These rates of detection were comparable to previous studies that used UAV imagery. Subsequently, five vegetation indices calculated from multispectral and visible color (RGB) images were used. Among the vegetation indices, normalized difference vegetation index (NDVI), normalized difference red edge index (NDRE), and vegetation atmospherically resistant index (VARI) were preferable explanatory variable in the logistic regression to divide damaged and undamaged trees. The accuracy of these models ranged from 98 % to 100 % and the F-measure ranged from 94 % to 100 %. The best model, the logistic regression model using VARI as the explanatory variable, was then tested using five datasets to evaluate general performance. Each model showed explicitly high accuracy ranging from 95 % to 100 %. The best accuracy when considering the ITD and classification was 84 %. To map pine wilt disease, the proposed method is suitable for practical use due to its high-efficient and low-cost.