著者
Dongyan Liu Kanako Tago Masahito Hayatsu Takeshi Tokida Hidemitsu Sakai Hirofumi Nakamura Yasuhiro Usui Toshihiro Hasegawa Susumu Asakawa
出版者
日本微生物生態学会 / 日本土壌微生物学会 / Taiwan Society of Microbial Ecology / 植物微生物研究会
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
pp.ME16066, (Released:2016-09-07)
被引用文献数
23

Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.
著者
Yasushi ISHIGOOKA Toshihiro HASEGAWA Tsuneo KUWAGATA Motoki NISHIMORI Hitomi WAKATSUKI
出版者
The Society of Agricultural Meteorology of Japan
雑誌
農業気象 (ISSN:00218588)
巻号頁・発行日
vol.77, no.2, pp.139-149, 2021 (Released:2021-04-10)
参考文献数
44
被引用文献数
15

Rice is the most important cereal crop in Japan, and therefore the impact of projected climate change on its production and quality has been assessed using rice growth models accounting for the effects of rising temperature and atmospheric CO2 concentration ([CO2]) on important growth processes. Recent experimental studies, however, have shown some negative effects of interactions between [CO2] and temperature on yield and quality of rice which were not accounted for by previous impact assessments. This study examined the importance of [CO2]×temperature interactions in the nationwide impacts of climate change on grain yield and quality of rice in Japan by 2100. We introduced new functions accounting for the effects of interactions on yield. Then we adopted the acceleration by elevated [CO2] in the estimation of the occurrence of chalky grains, an indicator of appearance quality of rice. We applied the modified model to Japan at a spatial resolution of 1 km using 10 climate scenarios (5 Global Circulation Models×2 representative concentration pathways [RCPs]) from 1981 to 2100. The effects of the newly introduced negative effects of [CO2]×temperature were evaluated by comparing simulations with and without the interaction in each scenario. Nationwide production was estimated to decrease by up to 28% and the percentage of white chalky grains to increase up to 16% relative to the previous assessment results, especially in RCP8.5, in which larger increases were projected in both temperature and [CO2]. The result suggests that the positive effect of elevated [CO2], which had been expected to offset the negative effect of increased temperature on rice productivity, may be limited in the future, and rice quality degradation may be more severe than predicted previously.