著者
Alperen PALA Toshinori KUWAHARA Takumi SAITOU Hiroki UTO Yoshihiko SHIBUYA
出版者
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
雑誌
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN (ISSN:18840485)
巻号頁・発行日
vol.20, pp.65-72, 2022 (Released:2022-12-21)
参考文献数
18

Many satellites are currently in orbit around the Earth and will remain so for years, even though they have completed their intended missions owing to their long natural de-orbiting times. Many methods have been proposed to increase the de-orbiting speed of such satellites, of which one uses atmospheric drag sails. The micro-satellite ALE-1 is equipped with a drag sail that is deployed at a distance from the satellite through the use of a boom element to ensure continuous communication and solar charging. The drag sail is also capable of separating itself from the micro-satellite if necessary to decrease the de-orbiting speed. This paper discusses an in-orbit demonstration where the aforementioned boom element is extended, as well as the deployment of the aforementioned drag sail and com-pares the space and ground experiment results.
著者
Tomomasa SHIBUYA Toshinori KUWAHARA Pasith TANGDHANAKANOND Shinya FUJITA Yuji SATO Kosuke HANYU Yu MURATA Adrien POTIER Morokot SAKAL Yuji SAKAMOTO
出版者
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
雑誌
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN (ISSN:18840485)
巻号頁・発行日
vol.19, no.6, pp.855-864, 2021 (Released:2021-11-04)
参考文献数
20

The Space Robotics Laboratory (SRL) of Tohoku University has developed a 50-kg-class microsatellite called RISESAT, which was launched in January 2019. The main missions of this satellite are to conduct earth observation using a high-resolution telescope and perform a demonstration of optical communication. To achieve these missions, it is necessary to maintain the on-board components in a specified safe temperature range. In this satellite, on-board components such as the battery and power control unit are mounted to the central pillars of the satellite structure, which are insulated from the outer panels, and are thus not easily affected by the external environment. Therefore, it is important to determine the amount of heat generation by the components as well as the heat transfer parameters between structure panels. The purpose of this study is to determine the parameters such as thermal contact conductance between structure panels and heat generation of the components. We conducted the thermal vacuum tests to improve the accuracy of the determination of these parameters. Finally, we analyzed the flight data and evaluated the validity of the parameter determination using data from the regular operations phase of the mission. The seasonal effects on the thermal design were also evaluated using data from the first 480 days after launch.