著者
Tsubasa Ohbayashi Yong Wang Luciano Nobuhiro Aoyagi Shintaro Hara Kanako Tago Masahito Hayatsu
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.38, no.4, pp.ME23068, 2023 (Released:2023-12-13)
参考文献数
67

Nitrification is a key process in the biogeochemical nitrogen cycle and a major emission source of the greenhouse gas nitrous oxide (N2O). The periplasmic enzyme hydroxylamine oxidoreductase (HAO) is involved in the oxidation of hydroxylamine to nitric oxide in the second step of nitrification, producing N2O as a byproduct. Its three-dimensional structure demonstrates that slight differences in HAO active site residues have inhibitor effects. Therefore, a more detailed understanding of the diversity of HAO active site residues in soil microorganisms is important for the development of novel nitrification inhibitors using structure-guided drug design. However, this has not yet been examined. In the present study, we investigated hao gene diversity in beta-proteobacterial ammonia-oxidizing bacteria (β-AOB) and complete ammonia-oxidizing (comammox; Nitrospira spp.) bacteria in agricultural fields using a clone library ana­lysis. A total of 1,949 hao gene sequences revealed that hao gene diversity in β-AOB and comammox bacteria was affected by the fertilizer treatment and field type, respectively. Moreover, hao sequences showed the almost complete conservation of the six HAO active site residues in both β-AOB and comammox bacteria. The diversity of nitrifying bacteria showed similarity between hao and amoA genes. The nxrB amplicon sequence revealed the dominance of Nitrospira cluster II in tea field soils. The present study is the first to reveal hao gene diversity in agricultural soils, which will accelerate the efficient screening of HAO inhibitors and evaluations of their suppressive effects on nitrification in agricultural soils.
著者
Tsubasa Ohbayashi Raynald Cossard Gaëlle Lextrait Takahiro Hosokawa Vincent Lesieur Kazutaka Takeshita Kanako Tago Peter Mergaert Yoshitomo Kikuchi
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.3, pp.ME22042, 2022 (Released:2022-08-11)
参考文献数
56
被引用文献数
7

Many stinkbugs in the superfamily Coreoidea (Hemiptera: Heteroptera) develop crypts in the posterior midgut, harboring Caballeronia (Burkholderia) symbionts. These symbionts form a monophyletic group in Burkholderia sensu lato, called the “stinkbug-associated beneficial and environmental (SBE)” group, recently reclassified as the new genus Caballeronia. SBE symbionts are separated into the subclades SBE-α and SBE-β. Previous studies suggested a regional effect on the symbiont infection pattern; Japanese and American bug species are more likely to be associated with SBE-α, while European bug species are almost exclusively associated with SBE-β. However, since only a few insect species have been investigated, it remains unclear whether region-specific infection is general. We herein investigated Caballeronia gut symbionts in diverse Japanese, European, and North American populations of a cosmopolitan species, the Western conifer seed bug Leptoglossus occidentalis (Coreoidea: Coreidae). A mole­cular phylogenetic ana­lysis of the 16S rRNA gene demonstrated that SBE-β was the most dominant in all populations. Notably, SBE-α was rarely detected in any region, while a third clade, the “Coreoidea clade” occupied one fourth of the tested populations. Although aposymbiotic bugs showed high mortality, SBE-α- and SBE-β-inoculated insects both showed high survival rates; however, a competition assay demonstrated that SBE-β outcompeted SBE-α in the midgut crypts of L. occidentalis. These results strongly suggest that symbiont specificity in the Leptoglossus-Caballeronia symbiotic association is influenced by the host rather than geography, while the geographic distribution of symbionts may be more important in other bugs.