著者
Ginga KITAHARA Akira YOSHIASA Makoto TOKUDA Tsubasa TOBASE Kazumasa SUGIYAMA
出版者
Japan Association of Mineralogical Sciences
雑誌
Journal of Mineralogical and Petrological Sciences (ISSN:13456296)
巻号頁・発行日
vol.116, no.1, pp.45-55, 2021 (Released:2021-03-06)
参考文献数
43

Structural analysis of Ce– and Nb–perovskites containing Fe, Zr, Nb, and rare earth elements (REEs) in CaTiO3 perovskite was performed using single–crystal X–ray diffraction and X–ray absorption near–edge structure (XANES) analyses. Based on chemical analysis results, XANES measurements and the site–occupation of elements at A– and B–sites showed the chemical formula:(Ca2+0.817REE3+0.087Na+0.081Sr2+0.005Th4+0.003)1.998+0.993(Ti4+0.941Nb5+0.017Fe3+0.013V5+0.010Fe2+0.007Sc3+0.006Zn2+0.005Al3+0.002Ge4+0.001W6+0.001)3.996+1.003O3 for Ce–perovskite and(Ca2+0.937Ce3+0.021Na+0.020La3+0.015Sr2+0.003)2.008+0.996(Ti4+0.730Nb5+0.122Fe3+0.108Al3+0.020Zr4+0.009V5+0.008)3.990+0.997O3for Nb–perovskite. In Ce– and Nb–perovskites, the total charges at the A– and B–sites achieved near–ideal divalent and tetravalent states such as Ca2+Ti4+O3, respectively, due to complex elemental substitutions. Local distortions around Ti in the perovskite solid solutions were greater, and the pre–edge features of the Ti atoms in Ce– and Nb–perovskites were different from those in pure CaTiO3. The valence states and local structures of Fe in Ce– and Nb–perovskites were significantly different. The existence of divalent Fe2+ at the B–site in Ce–perovskite was confirmed. It is presumed that the displacement ellipsoids of all atoms and local irregularities in Ce–perovskite increase owing to the radiative decay of the actinoid element Th. We reconfirmed that the composition and three–dimensional structure of perovskite–type structures were flexible and caused various electrical, structural changes.