- 著者
-
Xiaojun Pang
Haojun Huang
Yuyu Wei
Jiyong Leng
- 出版者
- Japan Oil Chemists' Society
- 雑誌
- Journal of Oleo Science (ISSN:13458957)
- 巻号頁・発行日
- vol.71, no.9, pp.1375-1385, 2022 (Released:2022-09-01)
- 参考文献数
- 44
- 被引用文献数
-
1
Glioblastoma multiforme or GBM is a destructive malignancy of the central nervous system and is accountable for leading cause of cancer related mortality. Inadequate success rate of surgical interventions and development of resistance towards the current therapeutical regime provides impetus for exploring novel therapeutical interventions against the disease. Recently, several epidemiological studies have explored the plausible utility of natural, dietary compounds in influencing the development, progression, and cancer metastasis. Recently, different phytoconstituents of Cassia angustifolia were found to be associated with anti-microbial, anti-cancer and anti-inflammatory effects. Therefore, the aim of the present study was to evaluate the anti-proliferative efficacy of ethanolic leaf extract of C. angustifolia (LCaEt-OH) against rat derived glioblastoma C6 cells. Briefly, the anti-proliferative potential of LCaEt-OH was assessed using MTT assay, quantitative estimation of ROS, and evaluation of mitochondrial membrane potential (ΔΨm). Moreover, the activity of caspases involved in intrinsic apoptotic pathways was also investigated using colorimetric kit followed by quantitative RT-PCR evaluation of modulation in gene expressions triggered due to LCaEt-OH treatment. Treatment of LCaEt-OH on C6 cells elucidated substantial dose-dependent decline in cellular viability. Furthermore, LCaEt-OH showed its efficacy in substantially enhancing intracellular ROS. LCaEt-OH also incited apoptosis in C6 cells by instigating nuclear condensation and dissipation of ΔΨm. In addition, LCaEt-OH mediated instigation of apoptosis was directly influenced by increased activity of caspases indispensable for intrinsic apoptotic pathway. These conclusive evidences indicate towards anticancer efficacy of LCaEt-OH against C6 cells.