- 著者
-
MASUOKA AKIRA
YANAGAWA MAKOTO
- 出版者
- World Scientific Publishing Company
- 雑誌
- International journal of mathematics (ISSN:0129167X)
- 巻号頁・発行日
- vol.24, no.4, pp.1350030, 2013-04
- 被引用文献数
-
1
Realizing the possibility suggested by Hardouin [Iterative q-difference Galois theory, J. Reine Angew. Math.644 (2010) 101–144], we show that her own Picard–Vessiot (PV) theory for iterative q-difference rings is covered by the (consequently, more general) framework, settled by Amano and Masuoka [Picard–Vessiot extensions of artinian simple module algebras, J. Algebra285 (2005) 743–767], of artinian simple module algebras over a cocommutative pointed Hopf algebra. An essential point is to represent iterative q-difference modules over an iterative q-difference ring R, by modules over a certain cocommutative ×R-bialgebra. Recall that the notion of ×R-bialgebras was defined by Sweedler [Groups of simple algebras, Publ. Math. Inst. Hautes Études Sci.44 (1974) 79–189], as a generalization of bialgebras.