著者
Gaitan P. Isozaki H. Poisson O. Siltanen S. Tamminen J. P.
出版者
Society for Industrial and Applied Mathematics
雑誌
SIAM journal on mathematical analysis (ISSN:00361410)
巻号頁・発行日
vol.45, no.3, pp.1675-1690, 2013-05
被引用文献数
5

We consider an inverse boundary value problem for the heat equation on the interval $(0,1)$, where the heat conductivity $\gamma(t,x)$ is piecewise constant and the point of discontinuity depends on time: $\gamma(t,x) = k^2 \ (0 < x < s(t))$, $\gamma(t,x) = 1\ (s(t) < x < 1)$. First, we show that $k$ and $s(t)$ on the time interval $[0,T]$ are determined from a partial Dirichlet-to-Neumann map: $u(t,1) \to \partial_xu(t,1), \ 0 < t < T$, $u(t,x)$ being the solution to the heat equation such that $u(t,0)=0$, independently of the initial data $u(0,x)$. Second, we show that another partial Dirichlet-to-Neumann map: $u(t,0) \to \partial_xu(t,1), \ 0 < t < T$, $u(t,x)$ being the solution to the heat equation such that $u(t,1)=0$, restricts the pair $(k,s(t))$ to, at most, two cases on the time interval $[0,T]$, independently of the initial data $u(0,x)$.

言及状況

外部データベース (DOI)

Twitter (1 users, 1 posts, 0 favorites)

収集済み URL リスト