著者
鶴岡 慶雅 近山 隆
出版者
言語処理学会
雑誌
自然言語処理 (ISSN:13407619)
巻号頁・発行日
vol.9, no.3, pp.3-19, 2002-04

統計的クラス分類器としての決定リストは,近年自然言語処理における様々な分野でその有効性を示している.決定リストを構成する上で最も重要な問題の一つは,ルールの信頼度の算出法である.決定リストを用いた多くの研究では,最尤推定法と簡単なスムージングにより信頼度を算出しているが,理論的な根拠に欠け推定精度も高くないという問題がある.そこで本論文では,ベイズ学習法を利用してルールの信頼度を算出する手法を示す.さらに,証拠の種類ごとに異なる事前分布を利用することで,より正確な信頼度の推定が可能になり,決定リストの性能が向上することを示す.本手法の有効性を確かめるために,語義曖昧性解消の問題に決定リストを適用して実験を行なった.英語に関してはSenseval-1 のデータを用い,日本語に関しては疑似単語を用いた.その結果,ベイズ学習による信頼度推定手法が,ルールの確率値の推定精度を高め,決定リストの分類性能を向上させることを確認した.

言及状況

はてなブックマーク (1 users, 1 posts)

収集済み URL リスト