著者
小宮山 純平 大岩 秀和 中川 裕志
出版者
人工知能学会
雑誌
人工知能学会全国大会論文集 (ISSN:13479881)
巻号頁・発行日
vol.28, 2014

MannらによるIterative Parameter Mixtureを代表例とした、データが多くのマシンに分散しており、各マシンでの学習を重みづけして統合する状況を考える。一部のマシンが故障などにより異常なデータを返し、学習の結果を悪化させることが懸念される。データ分布の間のダイバージェンスを考え、各マシンの重要度をそのデータから自動的に重みづけし、異常データの影響を抑える手法を提案する。

言及状況

はてなブックマーク (1 users, 1 posts)

収集済み URL リスト