著者
Shinji C. Nagasaki Tomonori D. Fukuda Mayumi Yamada Yusuke III Suzuki Ryo Kakutani Adam T. Guy Itaru Imayoshi
出版者
Japan Society for Cell Biology
雑誌
Cell Structure and Function (ISSN:03867196)
巻号頁・発行日
vol.48, no.1, pp.31-47, 2023 (Released:2023-02-08)
参考文献数
77
被引用文献数
1

The Gal4/UAS system is a versatile tool to manipulate exogenous gene expression of cells spatially and temporally in many model organisms. Many variations of light-controllable Gal4/UAS system are now available, following the development of photo-activatable (PA) molecular switches and integration of these tools. However, many PA-Gal4 transcription factors have undesired background transcription activities even in dark conditions, and this severely attenuates reliable light-controlled gene expression. Therefore, it is important to develop reliable PA-Gal4 transcription factors with robust light-induced gene expression and limited background activity. By optimization of synthetic PA-Gal4 transcription factors, we have validated configurations of Gal4 DNA biding domain, transcription activation domain and blue light-dependent dimer formation molecule Vivid (VVD), and applied types of transcription activation domains to develop a new PA-Gal4 transcription factor we have named eGAV (enhanced Gal4-VVD transcription factor). Background activity of eGAV in dark conditions was significantly lower than that of hGAVPO, a commonly used PA-Gal4 transcription factor, and maximum light-induced gene expression levels were also improved. Light-controlled gene expression was verified in cultured HEK293T cells with plasmid-transient transfections, and in mouse EpH4 cells with lentivirus vector-mediated transduction. Furthermore, light-controlled eGAV-mediated transcription was confirmed in transfected neural stem cells and progenitors in developing and adult mouse brain and chick spinal cord, and in adult mouse hepatocytes, demonstrating that eGAV can be applied to a wide range of experimental systems and model organisms.Key words: optogenetics, Gal4/UAS system, transcription, gene expression, Vivid

言及状況

外部データベース (DOI)

Twitter (1 users, 1 posts, 0 favorites)

J-STAGE Articles - Enhancement of Vivid-based photo-activatable Gal4 transcription factor in mammalian cells https://t.co/UNTWEiXcmH 光受容体Vividを利用した青色光作動性Gal4転写因子を哺乳類細胞で最適化し、遺伝子発現の光操作の効率と信頼性を向上させることに成功しました。

収集済み URL リスト