著者
一ノ瀬 正和
出版者
公益社団法人 日本薬理学会
雑誌
日本薬理学雑誌 (ISSN:00155691)
巻号頁・発行日
vol.111, no.4, pp.195-203, 1998 (Released:2007-01-30)
参考文献数
37
被引用文献数
6 4

Airways are richly innervated by 4 nervous systems: adrenergic, cholinergic, inhibitory nonadrenergic noncholinergic (i-NANC), and excitatory NANC (e-NANC) nervous systems. Dysfunction or hyperfunction of these systems may be involved in the inflammation or airway hyperresponsiveness observed in asthmatic patients. The cholinergic nervous system is the predominant neural bronchoconstrictor pathway in humans. Airway inflammation results in exaggerated acetylcholine release from cholinergic nerves via dysfunction of the autoreceptor, muscarinic M2, which is possibly caused by a major basic protein or IgE. Vasoactive intestinal peptide (VIP) and nitric oxide (NO) released from i-NANC nerves act as an airway smooth muscle dilator. The effects of VIP and NO are diminished after allergic reaction by inflammatory cell-mediated tryptase and reactive oxygen species. Thus, in asthmatic airways, the inflammatory change-mediated neural imbalance may result in airway hyperresponsiveness. Tachykinins derived from e-NANC nerves have a variety of actions including airway smooth muscle contraction, mucus secretion, vascular leakage, and neutrophil attachment; and they may be involved in the pathogenesis of asthma. Since tachykinin receptor antagonists are effective for bradykinin- and exercise-inducedbronchoconstriction in asthmatic patients, these drugs may be useful for asthma therapy.

言及状況

外部データベース (DOI)

Twitter (2 users, 2 posts, 5 favorites)

 ああ、なんかいいのをみつけました http://t.co/Uyfl9Iop RT @drug_discovery: @Mihoko_Nojiri 知覚神経が切れちゃうので、痰を排出するために反射が起こりにくくなった?

収集済み URL リスト