著者
竹内 敏己 藤野 清次
出版者
一般社団法人 日本応用数理学会
雑誌
日本応用数理学会論文誌 (ISSN:09172246)
巻号頁・発行日
vol.5, no.1, pp.9-26, 1995
参考文献数
14

In this paper we study theoretically on some mathematical properties of the matrix of the linear system of equations which stems from discretization of n-dimensional Laplace equation by finite difference approximations. The mathematical properties, i.e., the maximum and minimum absolute eigenvalues, the eigenvectors and the condition numbers of the coefficient matrix A and the Jacobi matrix B of the iterative method are estimated. The discretization by the finite differences in n-dimensions is made using the nearest and skewed neighboring grid points. The effectiveness of the variants of the finite differences is shown throughout this study.

言及状況

外部データベース (DOI)

はてなブックマーク (1 users, 2 posts)

収集済み URL リスト