- 著者
-
土屋 明
新家 富雄
- 出版者
- Japan Society for Marine Surveys and Technology
- 雑誌
- 海洋調査技術 (ISSN:09152997)
- 巻号頁・発行日
- vol.2, no.1, pp.1_45-1_54, 1990
On this paper, we describe the result in a basic study for a technical developing classification of coastal bottom material by using of acoustic reflection method. As the item of classification of bottom material, we selected, especially, such physical properties as grain size distribution and volume concentration (porosity) of particles in soft-mudsediment. Newly physical parameter <I>CPC</I> (cumulative weight percentage of particle volume concentration) is defined.<br> The other hand, we have derived a new conception of acoustic propagation, sound velocity and attenuation, for a model of N-phase suspension. In the conception, the volume ratio of N-phase particles classified by grain size in modefied suspension is particularly introduced.<br> The applicability of the conception for the soft-mud sediment was verified through both numerical simulations and laboratory experiments measuring physical properties, sound speed and attenuation at several frequencies.<br> A center frequency <I>f</I> of sound speed dispersion has a good response with the mediam grain size φ<SUB><I>m</I></SUB> (φ<SUB><I>m</I></SUB>=-log<SUB>2</SUB> 2 <I>a<SUB>m</SUB></I>; <I>a<SUB>m</SUB></I> is radius of particle in milli-meter) in the <I>CPC</I> curve. Then, the regressive formulation is<br> φ<SUB><I>m</I></SUB>=1.62 <I>F</I>+3.99±0.244<br> where <I>F</I>≡log<SUB>10</SUB> <I>f</I>; <I>f</I> in kHz.<br> A maximum V<SUB>m</SUB> of sound velocity at higher frequency range, eg. several hunderd kilo-hertz to several hundred mega-hertz, etc., is corresponding to the maximum of <I>CPC</I> curve at each volume concentration <I>C<SUB>p</SUB></I>. The theoretical formulation is<br> <I>C<SUB>p</SUB></I>=<I>CPC</I>={1.125 (<I>V<SUB>m</SUB></I>-1)}<SUP>1/2</SUP><br> where <I>V<SUB>m</SUB></I>=|<I>V<SUB>s</SUB></I>/<I>V<SUB>l</SUB></I>|<SUB>max</SUB>.<br> By using these formulas, φ<I><SUB>m</SUB></I> and <I>C<SUB>p</SUB></I> can be predicted from measured <I>F</I> and <I>V<SUB>m</SUB></I>.